

EFPF: European Connected Factory Platform for
Agile Manufacturing

WP3: EFPF Architecture

D3.1: EFPF Architecture-I
Vs: 1.0

Deliverable Lead and Editor: Rohit Deshmukh, FIT

Contributing Partners: FIT, ICE, SRFG, ASC, VLC, CNET, CERTH, C2K, NXW, ALM,
AID, FOR, SRDC, LINKS

Date: 2019-09

Dissemination: Public

Status: <Draft ¦ Consortium Approved ¦ EU Approved>

Grant Agreement:
825075

Short Abstract

This deliverable presents the baseline architecture of the EFPF
ecosystem with focus on the EFPF Platform and the Data Spine, the
interoperability backbone of the EFPF ecosystem. The architecture
is both modular and extensible to meet the need for incorporating
new tools in the EFPF platform, new platforms in the EFPF
ecosystem and also to accommodate the needs of users and
experimenters. The baseline architecture presented in this
deliverable will be revised in D3.2 at M18 of EFPF project.

 European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public II / VI

Document Status

Deliverable Lead

Rohit Deshmukh, FIT

Internal
Reviewer 1

Norman Wessel, ASC

Internal
Reviewer 2

Violeta Damjanovic-Behrendt, SRFG

Type

Deliverable

Work Package

WP3: EFPF Architecture

ID

D3.1: EFPF Architecture-I

Due Date

2019-09

Delivery Date

2019-09

Status

<Draft ¦ Consortium Approved ¦ EU Approved>

History

See Annex A.

Status

This deliverable is subject to final acceptance by the European Commission.

Further Information

www.efpf.org

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its sole
risk and liability.

http://www.efpf.org/
http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public III / VI

Project Partners:

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public IV / VI

Executive Summary

This deliverable presents the baseline architecture of the EFPF ecosystem that is composed
of the Data Spine, the EFPF platform, the four base platforms (from H2020 FoF-11-2016
cluster: NIMBLE1, COMPOSITION2, DIGICOR3, and vf-OS4) and external platforms. The
deliverable primarily focuses on the architectural specification of the two major components
of the EFPF ecosystem: the EFPF platform and the Data Spine. It details the architectural
design of the subcomponents of the Data Spine and the high-level architecture of the tools
and services that together constitute the EFPF platform. However, the detailed or internal
architecture of the EFPF platform tools and services is not the focus in this deliverable.
Rather, how these tools and services connect or interplay with the EFPF Data Spine or
within the EFPF platform is the main concern.

The architecture of the EFPF Data Spine and Platform has been designed with modularity
and extensibility in mind to meet the need for incorporating new tools in the EFPF platform
and external platforms in the EFPF ecosystem, with minimum effort, and also the needs of
users and experimenters.

The architecture described in this deliverable is fundamentally aimed at enabling the
provision of an operational technology (e.g. digital manufacturing) platform. To achieve this,
the architecture definition considers the resources (i.e. tools, services) provided by the EFPF
partners, their interconnections, dependencies (data, access, communications) and
interfaces (both internal and external) to Data Spine and the EFPF platform.

One important objective of this deliverable is to provide necessary information to the EFPF
project participants as well as external entities who might be interested in interlinking their
tools/services through the Data Spine and making them part of the EFPF ecosystem.

The baseline architecture presented in this deliverable will be subsequently developed and
enhanced as the project progresses and the updated architectural specification will be
included in the next version of this deliverable at M18 of the EFPF project.

1 https://www.nimble-project.org/
2 https://www.composition-project.eu/
3 https://www.digicor-project.eu/
4 https://www.vf-os.eu/

http://www.efpf.org/
https://www.nimble-project.org/
https://www.composition-project.eu/
https://www.digicor-project.eu/
https://www.vf-os.eu/

 European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public V / VI

Table of Contents

0 Introduction .. 7

 EFPF Project Overview ... 7
 Deliverable Purpose and Scope .. 7

 Target Audience .. 7
 Deliverable Context ... 8

 Document Structure ... 8
 Document Status .. 8

 Document Dependencies ... 8
 Glossary and Abbreviations ... 9

 External Annexes and Supporting Documents .. 9
 Reading Notes ... 9

1 EFPF Architecture Methodology .. 10
 Software Architecture Design Fundamentals... 10

 Definitions .. 10
 Software Architecture Design Process .. 12

1.3.1 Viewpoint Catalogue .. 14
2 EFPF Architecture Context View.. 15

3 EFPF Architecture Functional View ... 17
 Data Spine ... 17

3.1.1 Introduction .. 17
3.1.2 Integration Flow Engine ... 18

3.1.3 API Security Gateway .. 19
3.1.4 Service Registry .. 20

3.1.5 Message Bus ... 21
3.1.6 EFPF Security Portal ... 22

3.1.7 The Realisation and Quality Assessment of the Data Spine 25
 EFPF Platform ... 29

3.2.1 Introduction to the EFPF Platform ... 29
3.2.2 Portal ... 30

3.2.3 Marketplace ... 32
3.2.4 Matchmaking ... 36

3.2.5 Governance & Trust... 40
3.2.6 Business & Network Intelligence ... 42

3.2.7 Smart Contracting .. 46
3.2.8 Data Analytics .. 53

3.2.9 Workflow & Business Process ... 55
3.2.10 Smart Factory Tools and Services ... 57

3.2.11 Secure Data Storage ... 65
3.2.12 Factory Connectors & Gateways ... 66

4 Development & Deployment View.. 71
 Delivery ... 73

4.1.1 Dependencies .. 73
4.1.2 Policies .. 73

4.1.3 Frequency .. 73
4.1.4 Versioning .. 74

 Monitoring .. 74

5 Base Platforms and Interface Contracts .. 75
 COMPOSITION ... 75

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public VI / VI

 NIMBLE ... 76

 DIGICOR ... 77
5.3.1 Aerospace Domain Portal .. 77

5.3.2 Automotive Domain Service Delivery... 78
 vf-OS ... 79

 Interface Contracts Between EFPF and Base Platforms 80
5.5.1 Interface to Factory Data: Industreweb Display 80

5.5.2 Shop-floor Connectivity: IndustreWeb Factory Connector 81
5.5.3 Blockchain for Monitoring of Distributed Activities: COMPOSITION

Blockchain .. 82
5.5.4 Agile Collaborations: Online Bidding Process .. 82

5.5.5 Data Analytics: Deep Learning Toolkit ... 83
5.5.6 Indexing Service: NIMBLE Indexing Service API 83

5.5.7 Catalogue Service: NIMBLE Catalogue REST API.................................. 84
5.5.8 Product Provisioning (vf-OS) ... 84

5.5.9 Product Provisioning (SMECluster) ... 85
5.5.10 Event Reactor: Symphony Event Reactor .. 86

5.5.11 Hardware Abstraction: Symphony Hardware Abstraction Layer 86
5.5.12 Risk Analysis: SSM Risk Management Tool .. 87

5.5.13 Partner and Capability Search: Federated Search................................. 87
5.5.14 Identity Service: Identity Service and Central Identity Provider 88

5.5.15 Factory Connectivity: Industreweb Collect ... 89
5.5.16 Blockchain as a Service ... 89

5.5.17 Data Analytics: Data and Visual Analytics Toolkit 90
5.5.18 Semantic Framework ... 91

5.5.19 Factory Connectivity: Dynamic Factory Connector 92
5.5.20 Supply Chain Visibility: iQluster ... 93

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 7 / 96

0 Introduction

 EFPF Project Overview

EFPF – European Connected Factory Platform for Agile Manufacturing – is a project funded
by the H2020 Framework Programme of the European Commission under Grant Agreement
825075 and conducted from January 2019 until December 2022. It engages 30 partners
(Users, Technology Providers, Consultants and Research Institutes) from 11 countries with
a total budget of circa 16M€. Further information: efpf.org

In order to foster the growth of a pan-European platform ecosystem that enables the
transition from “analogue-first” mass production, to “digital twins” and lot-size-one
manufacturing, the EFPF project will design, build and operate a federated digital
manufacturing platform. The Platform will be bootstrapped by interlinking the four base
platforms from FoF-11-2016 cluster funded by the European Commission, early on. This will
set the foundation for the development of EFPF Data Spine and the associated toolsets to
fully connect the existing platforms, toolsets and user communities of the 4 base platforms.
The federated EFPF platform will also be offered to new users through a unified Portal with
value-added features such as single sign-on (SSO), user access management
functionalities to hide the complexity of dealing with different platform and solution providers.

 Deliverable Purpose and Scope

The purpose of this document, “D3.1 EFPF Architecture-I”, is to present an overview of the
architecture of the EFPF ecosystem that is composed of the Data Spine, the EFPF platform,
the four base platforms and external platforms. This document focuses on the architecture
specification of two major components of the EFPF ecosystem: the Data Spine and the
EFPF platform. It describes the architecture of the subcomponents of the Data Spine and of
the tools and services that together constitute the EFPF platform. This deliverable presents
the key concepts related to the methodology used to develop the architectural design of the
EFPF ecosystem and its components. Finally the deliverable describes the components of
the Data Spine and EFPF platform along with their responsibilities, interfaces, and
interactions with other components.

This version of the deliverable presents the current state of the architecture of EFPF
ecosystem and its components. These architectural specifications will be developed further,
and the updated architectural specifications will be included in the next version of deliverable
“D3.2 EFPF Architecture-II”.

 Target Audience

This document aims primarily at project participants and external entities that are interested
in interlinking their tools/services through the Data Spine and making them part of the EFPF
ecosystem. In addition, this deliverable provides the European Commission (including
appointed Independent experts) with an overview of the underlying architecture of the EFPF
platform.

http://www.efpf.org/
https://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 8 / 96

 Deliverable Context

This document is one of the cornerstones for achieving the project results. Its relationship
to other documents is as follows:

• D2.1: Project Vision and Roadmap for Realising Integrated EFPF Platform:
Provides an overview of the EFPF project and platform

• D2.3: Requirements of Embedded Pilot Scenarios: Provide an overview of the pilot
requirements on the federated EFPF platform

 Document Structure

This deliverable is broken down into the following sections:

• Section 1: EFPF Architecture Methodology: Presents the methodology used to
develop the architectural design of the EFPF ecosystem and its
components;

• Section 2: EFPF Architecture Context View: Provides an overview of the high-
level architecture of the EFPF platform, the Data Spine and the federated
ecosystem;

• Section 3: EFPF Architecture Functional View: Describes the architecture
specification of two major components of the EFPF ecosystem: the Data
Spine and the EFPF platform along with their subcomponents;

• Section 4: Development & Deployment View: Describes the deployment of EFPF
tools, services and components and the monitoring of the configured
components on the platform;

• Section 5: Base Platforms: Provides an overview of the base platforms

• Annexes:

• Annex A: Document History

• Annex B: References

• Annex C: Platform Profiles

• Annex D: Survey of Platforms for Realising Data Spine

 Document Status

This document is listed in the Description of Action (DoA) as “public”. It presents the
architecture of the EFPF Data Spine and the EFPF Platform. The architecture can be used
especially by external entities to interlink their tools/services through the Data Spine and
make them integral part of the EFPF ecosystem.

 Document Dependencies

This document is one of the two deliverables that describe the architecture of the EFPF Data
Spine and the EFPF Platform. This first deliverable at Month 9 of the EFPF project describes
the baseline architecture of the EFPF ecosystem and its components. The second and final
deliverable at Month 18 provides the final architecture.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 9 / 96

 Glossary and Abbreviations

A definition of common terms related to EFPF, as well as a list of abbreviations, is available
in the supplementary and separate document “EFPF Glossary and Abbreviations”.

Further information can be found at https://www.efpf.org/glossary

 External Annexes and Supporting Documents

Annexes and Supporting Documents:

• None

 Reading Notes

• None

http://www.efpf.org/
https://www.efpf.org/glossary

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 10 / 96

1 EFPF Architecture Methodology

This section presents the key concepts related to the methodology used to develop the
architectural design of the EFPF ecosystem and its components i.e. the EFPF Data Spine
and the EFPF platform.

Standards and best practices are followed as described in the following subchapters. In
addition, there have been meetings of the project partners to discuss, produce and refine
the architecture design.

 Software Architecture Design Fundamentals

The process used to define the architecture of the EFPF Data Spine and the platform is
based on IEEE 1471 "Recommended Practice for Architectural Description for Software-
Intensive Systems" [Hil00] and ISO/IEC/IEEE 42010:2011 “Systems and software
engineering - Architecture description” [IEEE42010, 2011], by which it was superseded. The
latter establishes a methodology for the architectural description (AD) of software-intensive
systems. It implies a process, which includes the following steps:

• Identify and record the stakeholders for the architecture and the system of interest

• Identify the architecture-related concerns of those stakeholders

• Select and document a set of architecture viewpoints which can address the
stakeholder concerns

• Create architecture views (one view for each viewpoint) which contain the architectural
models

• Analyse consistency of the views

• Record rationales for architectural choices taken

Viewpoints are collections of patterns, templates and conventions for constructing one type
of view. One example is the functional viewpoint (and therefore a functional view) that
contains all functions that the system should perform, the responsibilities and interfaces of
the functional elements and the relationship between them. These functions can be
described using UML diagrams. Moreover, it also describes which stakeholders need to be
involved and how to apply their needs in the architecture as stated in the "Architectural
Perspectives" chapter by Rozanski and Woods [RW05].

 Definitions

The following definitions are based on the ISO/IEC/IEEE 42010:2011 [IEEE 42010, 2011]
standard and the definitions provided by Rozanski and Woods [RW05]:

• Architecture: Comprises of the “concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and
evolution”

• Architectural Description: A collection of products to document an architecture

• Stakeholder: An individual, group or organisation that has at least one concern
relating to the system-of-interest

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 11 / 96

• Concern: An interest in a system, which is relevant to one or more stakeholders. It
might be a requirement (functional or non-functional) or an objective a stakeholder has
regarding the system.

• View: A set of models and descriptions representing a system or part of a system from
the perspective of a related set of concerns

• Viewpoint: Collection of patterns, templates and conventions for constructing one type
of view

• Model: A simplified representation of an aspect of the architecture, could be in form of
a UML diagram

The relationships between these concepts and the system-of-interests are shown in Figure
1.

According to the specification of the ISO/IEC/IEEE 42010:2011 standard, the main
concepts, architecture view and architecture viewpoint, are defined as follows:

• Architecture viewpoint: “Work product establishing the conventions for the
construction, interpretation and use of architecture views to frame specific system
concerns”

• Architecture view: “A representation of a whole system from the perspective of a
related set of concerns”

Figure 1: Architecture Description Concepts (Adapted from ISO/IEC/IEEE 42010:2011

“Systems and software engineering - Architecture description” [IEEE 42010, 2011])

A viewpoint defines the aims, intended audience, and content of a class of views and defines
the concerns that views of this class will address e.g. functional viewpoint or deployment
viewpoint. A view conforms to a viewpoint and communicates the resolution of a number of

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 12 / 96

concerns (and a resolution of a concern may be communicated in a number of views).
According to [RW05], using vision and point of view to describe the system architecture can
bring many benefits such as:

• Separation of concerns: Separating different models of a system into distinct (but
related) descriptions helps the design, analysis and communication processes by
allowing designers to focus on each aspect separately

• Communication with stakeholder groups: Different stakeholder groups can be
guided quickly to different parts of the architectural description based on their particular
concerns, and each view can be represented using language and notation
appropriated to the knowledge, expertise, and concerns of the intended readership

• Managements of complexity: Treat each significant aspect of the system separately,
the architecture can focus on each in turn and so help conquer the complexity resulting
from their combination

• Improved developer focus: Separating those aspects of the system that are
particularly important to the development team into different views, helps ensure that
the right system is built

 Software Architecture Design Process

In a software architecture design process, there are several principles that should be
followed to ensure a high quality of the architecture design. The different stakeholders
should be engaged and their concerns taken into account. There might be conflicting or
incompatible concerns from different stakeholders, which must be dealt with. Architecture
Definition Activities

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 13 / 96

Figure 2: Activities Supporting Architecture Definition [RW05]

In addition, an effective way to communicate decisions and solutions should be implemented
and the whole architecture design process should be flexible and pragmatic to be able to
deal with the changing requirements and the iterative approach in this project. Also, the
process should be technology-neutral.

Rozanski and Woods [RW05] have based the architectural design process on the following
definition:

"Architecture Definition is a process by which stakeholder needs and concerns are captured,
an architecture to meet these needs is designed, and the architecture is clearly and
unambiguously described via an architectural description." [RW05] (p.56)

In EFPF, the foundation for the architectural definition process is the IEEE 1471 standard
and the process that is aligned to this standard and proposed by Rozanski and Woods
[RW05] has been followed (as shown in Figure 2). The EFPF project started with the
definition of the initial scope and context of the EFPF ecosystem. This was followed by the
involvement of stakeholders in the process of the scenario development and use cases
description in WP2, and the subsequent requirements process. The stakeholders are
included to express their needs and desires with regards to the EFPF ecosystem and the
federation model adopted in the project to realise an ecosystem. The stakeholder input was
also needed to capture quality properties that increase the success of the platform. The
requirements from workshops, vision scenarios, and use cases, together with requirements
from other sources (such as experiences of project partners) are processed as the input for
the current architecture design phase, which has been reported in this deliverable. Based
on this architectural description, the first prototypes are created, which can be seen as a

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 14 / 96

skeleton system with base functionality developed above that. These development efforts
reveal some experiences and lessons learnt, which in turn constitute a valuable source for
the derivation of additional requirements and the revision of the existing ones.

1.3.1 Viewpoint Catalogue

EFPF reflects on the following viewpoints, from which the views of the architectural
document are derived:

• Context viewpoint: The context viewpoint describes interactions, relationships and
dependencies between the system-of-interest and its environment. The environment
includes those external entities with which the system interacts, e.g. other systems,
users, or developers

• Functional viewpoint: This viewpoint describes the functional elements needed to
meet the key requirements of the architecture. It will present proposals in a descriptive
way and UML diagrams will assist in the understanding of the proposal. It will describe
responsibilities, interfaces, and interactions between the functional elements

• Information viewpoint: The information viewpoint describes the data models and the
data flow as well as its distribution. This viewpoint defines which data will be stored
and where. The description of how data will be manipulated is part of this viewpoint too

• Deployment viewpoint: This viewpoint describes how and where the system will be
deployed and what dependencies exist, considering e.g. hardware requirements and
physical restraints. If there are technology compatibility issues, these can be
addressed in this viewpoint as well

• Development viewpoint: This viewpoint addresses concerns from the developers’
point of view. It describes how the software development process is supported, e.g.
what conventions should be followed and how the artefact management will look like

To address quality properties and crosscutting concerns, architectural perspectives will be
used. A typical example is security: It should be considered how the data is secured and
which functional elements need to be protected. Another perspective is about availability of
e.g. the hardware, the functional elements or the data.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 15 / 96

2 EFPF Architecture Context View

Figure 3 gives an overview of the high-level architecture of the EFPF platform, the Data
Spine and the EFPF federated ecosystem of base and external platforms. It provides a
formal split of key components of the EFPF federation and depicts the interaction between
them. In contrast to the high-level architecture diagrams shown in the DoA, the architecture
in Figure 3 further details the composition and role of Data Spine in the EFPF ecosystem
and its relationship with other components.

Figure 3 : High-level Architecture of the EFPF Ecosystem

The EFPF ecosystem follows the micro-service architecture approach in which different
functional modules implement individual functionalities that can be composed based on
specific user needs. In order to implement this approach, all components in the EFPF
ecosystem are prescribed to implement and publish open interfaces, preferably REST
interfaces (in case of synchronous communication), allowing the exchange of data and
avoiding the lag-time introduced by interconnection buses.

The EFPF ecosystem is based on a federation model, which consists of distributed
platforms, tools and components provided by several partners. The main elements in the
EFPF federation are:

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 16 / 96

• Data Spine: This is the central entity or gluing mechanism in the EFPF federation. The
Data Spine provides the interoperability infrastructure that initially interlinks and
establishes interoperability between the four base platforms: COMPOSITION,
DIGICOR, NIMBLE and vf-OS (see Section 5 for more details). It adheres to common
industry standards and follows the micro-services pattern to enable the creation of a
modular platform. Therefore, it can be easily extended beyond interconnecting the
base platforms to ‘plug’ new external platforms in and interlink them with the existing
platforms. Figure 3 also highlights the platform agnostic nature of the Data Spine i.e. it
is evident from the high-level architecture that as far as interactions with the Data Spine
are concerned, there is no distinction between the EFPF platform and the base
platforms or any other platforms (external and third party). Thus, the Data Spine would
be independent from the rest of the EFPF platform. This hypothetically means that
even if the EFPF platform were ‘switched-off’ in the future, the Data Spine would not
have to be ‘switched-off’ with it and therefore would continue to support an
interconnected ecosystem

• EFPF Platform: This is a digital platform that provides unified access to dispersed
(IoT, digital manufacturing, data analytics, blockchain, distributed workflow, business
intelligence, matchmaking, etc.) tools and services through a Web-based portal. The
tools and services brought together in the EFPF platform are the market ready or
reference implementations of the Smart Factory and Industry 4.0 tools from project
partners (see base platforms in Section 5). The collection of enhanced versions of such
tools and services from the base or external platforms deployed together as micro-
services would constitute the EFPF platform. These micro-services are made
accessible through the EFPF Portal using the Single Sign-On (SSO) functionality
offered by the EFPF ecosystem

• Base Platforms: The four base platforms (COMPOSITION, DIGICOR, NIMBLE and
vf-OS) in EFPF are funded by the European Commission's Horizon 2020 program
within the Collaborative Manufacturing and Logistic Cluster (FoF-11-2016). These
base platforms are interlinked through the Data Spine that offers seamless
interoperability of distributed tools and services by integrating, aligning and enhancing
the open APIs of the existing platforms

• External Platforms: In addition to the four base platforms, the EFPF ecosystem
enables interlinking of other platforms and open-source tools that address the specific
needs of connected smart factories. The external platforms that joined the EFPF
ecosystem at the beginning of the project are: ValueChain’s iQluster platform5 and
SMECluster’s Industreweb platform6

• Pilots and Experiments: These are the components and systems that will interact
with the EFPF ecosystem (including the EFPF Platform and the Data Spine) during the
course of the project

5 https://valuechain.com/supply-chain-intelligence/iqluster
6 https://www.industreweb.co.uk/

http://www.efpf.org/
https://valuechain.com/supply-chain-intelligence/iqluster
https://www.industreweb.co.uk/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 17 / 96

3 EFPF Architecture Functional View

The EFPF ecosystem consists of two major components: The Data Spine and the EFPF
Platform, as illustrated in Figure 3. These components and their subcomponents,
responsibilities, interfaces, and interactions with other (sub)components are described in
detail in the following sections.

 Data Spine

Data Spine is a collection of components that work together to form an integration,
interoperability and communications layer for the EFPF ecosystem.

The following subsection introduces the Data Spine and its components.

3.1.1 Introduction

Data Spine is the interoperability backbone of the EFPF ecosystem that interlinks and
establishes interoperability between the services of different platforms. The Data Spine is
aimed at bridging the interoperability gaps between services at three different levels:

• Protocol interoperability: The Data Spine supports two communication patterns:
a. Synchronous request-response pattern and
b. Asynchronous publish-subscribe pattern

While the Data Spine supports standard protocols that are widely used in the industry,
it employs an easily extensible mechanism for adding support for new protocols

• Data Model interoperability: The Data Spine provides a platform and mechanisms to
transform between the message formats, data structures and data models of different
services thereby bridging the syntactic and semantic gaps for data transfer

• Security interoperability: The EFPF Security Portal (EFS) component of the Data
Spine facilitates the federated security and SSO capability for the EFPF ecosystem

The process followed for the design of the conceptual components of the Data Spine
included gathering of interoperability requirements from the base platforms and the external
platforms to be integrated into the EFPF ecosystem. The technical profiles of these platforms
were documented, which included the specific components from these platforms, their
maturity level, exposed interfaces, protocols, data models, data formats, access control
mechanisms, authentication providers supported, dependencies, programming
environment, technical documentation, etc. The documented platform profiles are included
in Annex C. Based on these technical profiles of the base and external platforms; the
conceptual components of the Data Spine were defined.

Figure 4 depicts the architecture of the Data Spine showing a high-level conceptual view of
the following core components that provide the expected functionality of the Data Spine:

• The Integration Flow Engine component of the Data Spine provides a platform to the
system integrators, allowing them to create integration flows for interconnecting the
different APIs and services

• The Service Registry component allows the service providers to register their
services in the Data Spine. The Service Registry provides a facility for the service
consumers or system integrators to discover these services and retrieve their metadata

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 18 / 96

information required to create the integration flows. The service providers can also
write the integration flow specific information to the Service Registry

• The Message Bus component can be used for mediating the transfer of messages or
data between the platforms or service communicating through the Data Spine

• The EFS component of the Data Spine is responsible for providing a SSO facility
across the EFPF ecosystem (see API Security Gateway). In addition, the EFS
component enables data integrity, security analytics, trust and reputation mechanisms,
definition of policies and governance enforcement

• The API Security Gateway component of the Data Spine (and a sub-functionality of
EFS) acts as the policy enforcement point (PEP) for the Data Spine and the platforms
communicating through it. It intercepts all the traffic to the Data Spine and invokes the
security service for authentication and authorisation decisions

Figure 4: High-level Architecture of the Data Spine

3.1.2 Integration Flow Engine

The Integration Flow Engine component is a dataflow system that provides a platform to
bridge the interoperability gaps at protocol level and data model level, between the
heterogeneous services communicating through the Data Spine. The Integration Flow
Engine follows the concepts from flow-based programming [Mor10] and visual programming
[Shu86] paradigms to interconnect and interoperate between a particular pair of services

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 19 / 96

using a so-called ‘Integration Flow’. The Integration Flows support connectivity, data routing,
transformation and system mediation logic.

The Integration Flow Engine offers a drag-and-drop style Graphical User Interface (GUI) to
the system integrators to create the integration flows. The integration flows are designed
and implemented as directed graphs that have ‘processors’ at their vertices and the edges
represent the direction of the dataflow. The processors are of different types depending upon
the functionality they provide: The processors of type ‘Protocol Connector’ address the issue
of interlinking the services that use heterogeneous communication protocols, the processors
of type ‘Data Transformer’ provide means for transforming between data models and
message formats, etc. The Processors are the extension points of the Integration Flow
Engine. The Integration Flow Engine has in-built Protocol Connectors for standard
communication protocols that are widely used in the industry. Support for a new protocol
could be added through a new Protocol Connector to the Integration Flow Engine.

3.1.3 API Security Gateway

The API Security Gateway in EFPF acts as an intercepting proxy for the Data Spine. Figure
5 illustrates the flow of the EFPF token, sent from the EFPF Portal to the base platform:

1. API Security Gateway receives a GET/efpf/item/uri=foo request from the EFPF

portal/EFPF client. This request contains the EFPF auth token provided by the EFPF
IDentity Provider (IDP)

2. API Security Gateway requests EFPF Security (EFS) portal to validate the EFPF token
3. EFS validates the EFPF token
4. If the token is valid, EFS requests the base platform’s token (e.g. from the NIMBLE

platform) to authorise the request to the base platform. If the EFPF token is valid, steps
below will be further executed. Otherwise an HTTP 401 unauthorised response will be
sent

5. EFS retrieves the base platform’s token
6. EFS sends the success (HTTP 200) response to the API Security Gateway with the

relevant base platform’s token
7. API Security Gateway decides which base platform’s endpoint to use to route the

original request (note that the endpoint discovery can be done via the Service
Registry). The request is forwarded to the Integration Flow Engine (currently
implemented through Apache NiFi) to perform any required extract, transform, and
load (ETL) for the data model in the message

8. The Integration Flow Engine (NiFi) sends the requests to the base platform and
retrieves the response

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 20 / 96

Figure 5: API Security Gateway Workflow Diagram

3.1.4 Service Registry

In an interconnected EFPF ecosystem, services of different platforms need to be
orchestrated to achieve common objectives. In order for the services of one platform to
discover the services of other platforms, the service providers should be able to advertise
their services along with the associated metadata and make those discoverable for the
potential service consumers and for the system integrators. The Service Registry
component of the Data Spine fulfils this purpose. The Service Registry in EFPF is realised
through the LinkSmart® Service Catalog (SC) technology. It provides a RESTful API for the
lifecycle management of services and service discovery.

The rational for service registry comes from the fact that service consumers intend to search
for services based on their functional specification whereas the system integrators are
interested in retrieving the technical metadata of the services, e.g. protocols, endpoints, data
formats, data models, etc. in order to write the integration flows. The EFPF Service Registry
is capable of managing such heterogeneous metadata. In addition, its schema (see Figure
6) is capable of managing metadata for synchronous (request-response) as well as
asynchronous (publish-subscribe) type of services.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 21 / 96

{
 "id": "string",
 "type": "string",
 "title": "string",
 "description": "string",
 "meta": {},
 "apis": [{
 "title": "string",
 "protocol": "MQTT",
 "id": "string",
 "description": "string",
 "endpoint": "ssl://demo.linksmart.eu:8883",
 "spec": {
 "type": "<document type>",
 "url": "url to external document",
 "schema": {}
 },
 "meta": {}
 }],
 "doc": "string",
 "ttl": 0,
 "created": "2019-08-09T15:46:36.793Z",
 "updated": "2019-08-09T15:46:36.793Z",
 "expires": "2019-08-09T15:46:36.793Z"
}

Figure 6: Service Description Schema of the Service Registry

Figure 7 shows the API of LinkSmart® Service Catalog.

REST Endpoint HTTP
Method

Description

/ GET Retrieves API index.

/ {id} POST Creates new ‘Service’ object with a
random UUID (Universally Unique
IDentifier).

/ {id} GET Retrieves a ‘Service’ object

/ {id} PUT Updates the existing ‘Service’ or creates
a new one (with the provided ID)

/ {id} DELETE Deletes the ‘Service’

/{jsonpath}/{operator}/{value} GET Service filtering API

Figure 7: LinkSmart® Service Catalog REST API

3.1.5 Message Bus

Some of the platforms in the EFPF ecosystem, interconnected through the Data Spine, offer
their shop floor data as data streams through their factory connectors/gateways, while some
of them offer control data that can be used to control the actuators installed in their factories.
The Data Spine supports such asynchronous type of communication as well. In addition, the

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 22 / 96

Data Spine offers the Message Bus component to the publishers and/or the subscribers in
these platforms. The Message Bus in EFPF Data Spine supports standard publish-
subscribe-based messaging protocols such as MQTT, AMQP, etc. that are widely used in
the industry. The Message Bus in EFPF could be extended to add support for new protocols
via plugin mechanism.

3.1.6 EFPF Security Portal

Figure 8: EFPF Security (EFS) Portal

To enable the federated identity features, the EFPF platform requires the EFS portal to be
designed and implemented to efficiently govern the security management for various
platforms, e.g. NIMBLE, COMPOSITION, vfOS and DIGICOR (see Figure 8). The EFS is a
distributed single point of trust that enables a class of Super Administrator whose role is to
provide secure authentication of any tenant platform in the ecosystem (e.g. multi identities
to be managed across company’s accounts). EFS hosts the components required for the
identity and access management of the EFPF ecosystem and takes on the role of a trusted
IDP for base platforms. In addition, EFS provides other security controls, e.g. data integrity,
security analytics for risk identification, etc.

Figure 8 illustrates the Identity and Access Management setup of EFS. The user
authentication protocol and workflows to enable platform federation are described in the
following subsections.

 Authentication Protocol

The EFPF Identity Protocol (IDP) uses OpenID Connect (OIDC) as the authentication
protocol, which is an extension of OAuth 2.0. While OAuth 2.0 is only a framework for
building authorisation protocols, OIDC is a full-fledged authentication and authorisation
protocol. As all four base platforms in the project use Keycloak (www.keycloak.org), an open
source software product identity and access management solution, as IDP to manage the
authentication of the users. The EFS also uses Keycloak as IDP.

http://www.efpf.org/
http://www.keycloak.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 23 / 96

 Authentication Workflow

The EFPF Portal acts as the entry gateway to the EFPF ecosystem. In order to provide
access to the EFPF ecosystem, the users should register with the EFS portal that is based
on the OIDC protocol. EFS makes heavy use of the JSON Web Token (JWT), which is an
open standard (RFC 7519) that defines a compact and self-contained way to securely
transmit information between parties as a JSON object. This information can be verified and
trusted as it is digitally signed. JWTs can be signed using a secret (with the Hash-based
Message Authentication Code (HMAC) algorithm) or a public/private key pair by using RSA
encryption algorithm or Elliptic Curve Digital Signature Algorithm (ECDSA) digital signature
algorithm.

The registered user will have a manual vetting process before being granted with user
privileges to access the EFPF platform. The EFPF related roles and policy governance will
be defined through the EFPF governance mechanisms. The successful login to EFS will
generate a JWT for the user, which will be used by the EFPF Portal to perform API calls to
the EFPF ecosystem.

 User Federation with Base Platforms

To achieve user federation, the base platforms need to configure the EFPF IDP as the
trusted IDP. A user’s login interactions with the base platform and EFS can be performed
using one of the following workflows:

• Workflow 1 (see Figure 9) illustrates the bottom-up approach for user federated login
procedure. In this approach, the user (represented by a blue circle) logs into one of the
base platforms, e.g. NIMBLE, COMPOSITION, vf-OS, DIGICOR (PLATFORM 1 in the
rest of this section) using his/her EFPF credentials. The user is redirected from the
EFPF platform (PLATFORM) to the PLATFORM 1 with the authorisation code. The
PLATFORM 1 requests from the user his/her token for the authorisation code, in order
to match the user credentials and create the access for the user in PLATFORM 1.

Note Workflow 1 uses the OAuth2/OIDC protocol to enable federated access to the base
platform.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 24 / 96

Figure 9: User Federated Login Procedure (The Bottom-up Approach)

• Workflow 2 (see Figure 10) illustrates a top-down approach to user federated login. In
this approach, the user (a blue circle) initially logins to the EFPF platform (via EFS)
and then visits any base platform in the same browser session, e.g. PLATFORM 1,
PLATFORM 2, etc. The user decides to log into the base platform using his/her existing
EFPF credentials. The base platform e.g. PLATFORM 1 requests from the user his/her
token for the authorisation code, in order to match the user credentials and create the
access for the user in PLATFORM 1, and the user is allowed to access PLATFORM 1.
Furthermore, the same user goes to PLATFORM 2, in order to log into this platform
using his/her existing EFPF credentials. The PLATFORM 2 requests from the user
his/her token for the authorisation, and creates the linked user in the PLATFORM 2.
The user is now able to access PLATFORM 2.

Figure 10 illustrates the above described approach.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 25 / 96

Figure 10: User Federated Login Procedure (The Top-down Approach)

3.1.7 The Realisation and Quality Assessment of the Data Spine

In order to realise the conceptual components of the Data Spine, available permissive open
source technological platforms and frameworks were surveyed. The factors considered for
the survey were Platform, License, Language, Plugin/Extension Mechanism,
Supported Languages for Plugins, Hot Plugin Deployment, REST/API Management,
Reverse Proxy Support, Identity and Access Management, Type, Message Bus and
Relation to Data Spine conceptual component. The results of the survey are included in
Annex D.

The survey of several candidate platforms based on the requirements above resulted into
the identification of two possible solutions:

1. WSO2 Carbon Infrastructure Stack: The WSO2 Carbon Infrastructure Stack (WSO2
Platform) includes the components such as the Enterprise Integrator (WSO2 EI), the
API Manager, the Governance Registry, the Identity Server and the Message Broker
that could be used to realise the Integration Flow Engine, the Service Registry, the
EFPF Security Portal service and the Message Bus of Data Spine respectively

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 26 / 96

2. Apache NiFi with other components: Apache NiFi is a Data-flow management
tool based on the concepts of flow-based programming that could be used to realise
the Integration Flow Engine of Data Spine and other components such as the
LinkSmart Service Catalog or Consul, Keycloak, RabbitMQ, etc. could be used to
realise the other components of Data Spine

Apache NiFi and WSO2 Platform with focus on WSO2 EI were shortlisted for an
experimental evaluation. The objective of the experimental evaluation was the quality
assessment of these solutions in order to realise the Data Spine. Along with the
aspects/requirements mentioned above, the following factors are were considered for the
experimental evaluation:

• License: The platform must have a permissive open source license (e.g. Apache
License v2.0).

• Usability: The platform should offer an easy to use, intuitive and preferably Web-
based drag-and-drop style GUI to the system integrators to create the integration flows
with minimal effort.

• Built-in functionality: The platform should take care of the boilerplate code and
should facilitate the system integrators to integrate their services by configuring only
the service specific part of the integration flows with almost zero-coding effort.

• Built-in Protocol Connector: The platform should have built-in Protocol Connectors
for standard communication protocols that are widely used in the industry.

• Built-in Data Transformation Tools: The platform should have built-in support for
data transformation tools/languages, e.g. eXtensible Stylesheet Language
Transformations (XSLT), that are widely used in the industry.

• Extensibility: The platform should offer flexibility to the developers for extending the
platform by writing and plugging-in custom Processors.

• Performance and scalability: As all the communication in the EFPF ecosystem would
pass through the Integration Flow Engine, the platform should be lightweight and
scalable, e.g., it should be able to operate in a clustered fashion.

• Identity and access management: The platform should support a pluggable OpenID
Connect provider such as Keycloak in order to connect to the EFS through the Data
Spine and use the same user-base for authentication. In addition, it should have an in-
built authorisation framework to control fine-grained access to its components such as
the GUI, the REST API, etc.

• Component integration effort: The platform’s integration with other Data Spine
components should be as effortless as possible.

• Maintainability: An easy to deploy and maintain platform would be a bonus.

• Documentation: The platform should have a comprehensive documentation and an
active user community.

The results of experimental evaluation of Apache NiFi and WSO2 Platform with focus on
WSO2 EI are described below:

• License: Both the WSO2 Platform and Apache NiFi come with Apache License v2.0.
WSO2 Platform also comes with a commercial license for receiving support from
WSO2 development/support teams and access to WSO2 products’ update service,
etc.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 27 / 96

• Usability: Both the WSO2 EI and Apache NiFi provide a drag-and-drop style GUI to
the developers to create the integration flows with minimal effort. WSO2 EI’s GUI is
Eclipse-based whereas NiFi’s GUI is Web-based. In the case of WSO2 EI, in order to
create integration flows, a developer needs to install the Eclipse-based EI Tooling
development environment and configure the WSO2 EI server. Once an integration flow
has been created it can either be deployed directly from the EI Tooling if the remote
WSO2 EI server is configured or it can be exported as a Carbon Archive file (WSO2’s
custom app packaging file) and uploaded through WSO2 EI’s Management Console.
Whereas, In the case of NiFi, in order to create integration flows, a developer can
directly use NiFi’s Web-based GUI through a Web browser.

Also, learning curve for WSO2 EI and EI Tooling was observed to be much steeper
than NiFi. The way in which service integrations are designed for synchronous and
asynchronous services using the EI Tooling was observed to be completely different
from each other that seemed to confuse the developers, which is not the case with
NiFi.
In addition, the collaboration of work concerning a particular workflow among different
developers would be difficult in the case of WSO2 Platform as each developer needs
to use the EI Tooling desktop application installed in the local environment, whereas
in the case of NiFi, such a collaboration would be easy as NiFi provides a Web-based
GUI for creating workflows and a Multi-tenant authorization capability that enables
different groups of users to command, control, and observe different parts of the
dataflow, with different levels of authorization.
Therefore, NiFi was found to be better in terms of usability, developer productivity and
ease of collaboration.

• Built-in functionality: Both the WSO2 EI and Apache NiFi provide a decent
development environment for creating the integration flows with a drag-and-drop style
GUI.

• Built-in Protocol Connector: Both the WSO2 EI and Apache NiFi provide connectors
for standard communication protocols such as HTTP, MQTT, AMQP, etc. that are
widely used in the industry.

• Built-in Data Transformation Tools: WSO2 EI provides several components, which
in the architectural solution of WSO2 EI are called mediators, for mapping one data
model to another using translation rules. The WSO2 EI mediators that have been
tested are: Data Mapper, Payload Factory, XSLT and Script. All the aforementioned
mediators achieved the intended functionality but each one with some minor drawback
that depended on the use case in which they were used. The major drawback with
WSO2 EI was lack of flexibility that WSO2 EI has, in fact it seemed complicated to
extend the functionality provided by the system. The only mediator which was flexible
enough: the “Script Mediator”, which allows to programmatically access the message
and modify it requires the restarting of the server with each deployment of the script.
The only positive point of the WSO2 EI regarding the mediators was the simple, and
mostly guided, UI which make the system more usable for a semi-technical person,
but this is only applicable to very simple data transformations that do not include
complex elements like arrays, for example.
In comparison, NiFi provides less number of components, called processors, for the
same purpose of data mapping. These data transformation processors in NiFi are:
JoltTransformJSON, TransformXml and ExecuteScript. Apart from the steeper learning

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 28 / 96

curve, the processors look more flexible and manageable. For example, the processor
ExecuteScript doesn’t need the server to be restarted, by only updating the processor
itself, making it easy to develop and debug. JoltTransformJSON is a processor which
uses JOLT transformation rules to transform one JSON data model to another JSON
data model (the mapping we intend to use) and in order to use this processor it is
necessary to learn the rules of the transformation-language, resulting in a steeper
curve for just transforming between JSON formatted data models. Apart from the
previous drawbacks, NiFi with its less graphical UI, seems to be aimed at a more
technical user, giving more power and responsibility to the user.
Moreover, all the aforementioned NiFi components are able to achieve the data
transformation tasks in a flexible way, rather than the higher number of WSO2 EI
mediators that are mostly non applicable to the identified purposes because of a lack
of flexibility.

• Extensibility: NiFi is at its core built with extensibility in consideration. Points of
extension include: Processors, Controller Services, Reporting Tasks, Prioritizers, and
Customer User Interfaces. For example, it is possible to write a custom processor for
NiFi in order to connect to an OPC-UA server (based on OPC-UA Java Stack) and
read the data. WSO2 also has support for extension through custom mediators;
however, WSO2 Platform’s documentation recommends to avoid using the custom
mediators as they incur a high maintenance overhead and they might also introduce
version migration complications when upgrading WSO2 EI to a new version.

• Performance and scalability: Heavy resource utilization was noticed for WSO2 EI
and WSO2 Message Broker whereas NiFi was observed to work seamlessly with the
same amount of resource allocation. NiFi is also able to operate within a cluster.

• Identity and access management: NiFi supports a pluggable OpenID Connect based
authentication provider such as Keycloak. Alternatively, NiFi also supports user
authentication via client certificates, via username/password with pluggable Login
Identity Provider options for Lightweight Directory Access Protocol (LDAP) and
Kerberos or via Apache Knox. WSO2 Platform offers its own solution for identity and
access management called WSO2 Identity Server.

• Component integration effort: It was experienced during experimental evaluation
that the integration of WSO2 EI with WSO2 Governance Registry needs high
integration effort, even though these components belong to the same software stack.
NiFi provides connectors for integration with external components. E.g., for integration
with Kafka, NiFi has 20 built-in processors. Integration of NiFi with REST APIs of other
components such as EFS was done with minimal effort.

• Maintainability and Documentation: During the experimentation, the WSO2 EI was
evaluated with focus on Message Brokering. The WSO2 EI was installed on Ubuntu
16.04 TLS over Openstack. During the tests, a few times the software became slow,
stopped working and crashed; since troubleshooting and maintaining is difficult, usually
reinstallation was needed. As for Message Brokering for MQTT protocol, the tests
were successful but connecting the WSO2 components to an external broker failed.
For this problem, referring to the documentation wasn’t helpful because at the first
glance, the documentation looked very detailed and completed, but at the moment of
need, it was very difficult to find solutions. The documents are not up to date; the
structure is complicated and different versions of WSO2 Platforms have overlapping

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 29 / 96

documents. Since the WSO2 Platform has so many components and features the
learning process needs to be easier and smoother.
Unlike the WSO2, NiFi’s GUI is very simple, drag-and-drop style and easy to manage
and as for documents, they are simple and useful.

• Other factors: Some inconsistencies were observed with WSO2’s Management
Console. E.g., when simple workflows were created using the Management Console’s
UI, they were not listed on the page that displays all workflows. Also, WSO2 EI
internally makes use of SOAP (Simple Object Access Protocol) which incurs
unnecessary overhead as most of the synchronous communication in EFPF
ecosystem happens using REST over HTTP. No such issues were observed with NiFi.

Based on this experimental evaluation for quality assessment, Apache NiFi was selected to
be the central Integration Flow Engine of the Data Spine.

 EFPF Platform

The following subsections present a detailed overview of the components of the EFPF
platform. The subsection 3.2.1 introduces the EFPF platform and its components, and the
subsequent subsections present the architecture of components and describe the
functionalities provided by each component.

Figure 11: The EFPF Platform

3.2.1 Introduction to the EFPF Platform

The EFPF platform, shown in Figure 11, is a collection of smart tools and designed for the
EFPF ecosystem. These tools and services aim to cover the complete lifecycle of production
and logistic processes that will be validated by the three cross-domain pilot scenarios

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 30 / 96

brought forward by the project partners. Examples of the tools include e.g. data gateways,
distributed production planning and scheduling, distributed process design, monitoring,
decision support, process optimisation, risk management and blockchain based trust and
message exchange. In future plans (e.g. through open experimentation calls), the platform
may also integrate services that play a crucial role in collaborative processes. Examples
include technology services such as cloud storage, high performance computing, and value-
based services, e.g. training, smart contracts, legal advice etc.

The EFPF platform aims to integrate market ready or reference implementations of the smart
factory and Industry 4.0 tools from project partners. Figure 11 illustrates tools and services
that are broadly categorised into two types:

• Management Services: These are the EFPF-specific services that provide federated
or aggregate management capability of the services of different platforms and provide
a coherent interface to the user, e.g. the Marketplace.

• Collaboration Services: These are the utility services with a concrete capability for
realising collaborative processes in IoT, connected factory and automation
environments, e.g. the Data Analytics services.

3.2.2 Portal

Figure 12: Snapshot of EFPF Portal Dashboard

The EFPF Portal component is the unification point of distributed tools and platforms in the
EFPF ecosystem. It allows the user to access to connected tools, base platforms,
marketplaces, experiments and pilots through a unified interface. The EFPF Portal is
accessible at: https://efpf-portal.ascora.eu/,

The EFPF Portal and the communication to connected tools are secured by EFS, which is
a part of the Data Spine (see Section 173.1). New users and visitors access a landing page
that describes the EFPF platform and services. Additionally, the landing page allows existing

http://www.efpf.org/
https://efpf-portal.ascora.eu/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 31 / 96

users to login into the EFPF platform and visitors to start the registration process to retrieve
an account and become a member of the EFPF platform.

Figure 13: EFPF Portal Structure

The EFPF Portal structure shows currently available tools and four base platforms, besides
generic sections like the Dashboard or the landing page. The Marketplace (see section
3.2.3) allows unified access to marketplaces from connected platforms. Additional entries
for tools or platforms provided by the EFPF partners will be added in the future.

Technical Foundation: The EFPF Portal is a single-page application (SPA) based on the
Angular web application framework7 and can be deployed as a Docker8 container. The
system is currently available at https://efpf-portal.ascora.eu/9.

7 https://angular.io/
8 https://www.docker.com/
9 Subject to changes

http://www.efpf.org/
https://efpf-portal.ascora.eu/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 32 / 96

3.2.3 Marketplace

 Marketplace Overview

Figure 14: Snapshot of the EFPF Marketplace

The Internal Marketplace Framework provides access to items listed on marketplaces at
different platforms provided by the EFPF partners. Additionally, its accountancy Service
subcomponent provides features to track & trace and credit users of connected
marketplaces, (more information in section 3.2.3.2).

Currently the marketplaces of the following platforms are linked with the EFPF Marketplace
Framework (see Figure 14):

• vf-OS

• NIMBLE

• SMECluster

• COMPOSITION

The EFPF user can utilise integrated filter and sorting features to customise the view. To
get more information and options, a click on each of the listed products will redirect the user
to the connected marketplace where any transactions can be made.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 33 / 96

Figure 15: Marketplace Architecture

The architecture of the Marketplace component includes a frontend and a backend that
assimilates data to be shown in the frontend. The subcomponent Accountancy Service
communicates with base platforms via the Data Spine to track, trace and credit users coming
from the EFPF Portal.

Technical Foundation: This component is based on Angular web application framework
and is being delivered as a web component10 to enable reuse in other platforms.

10 https://www.webcomponents.org/introduction

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 34 / 96

 Accountancy Service

Figure 16: Accountancy Service Dashboard

The Accountancy Service is developed as a part of the EFPF Marketplace Framework and
provides insight into users’ interactions with the EFPF Platform, particularly any transactions
that EFPF users make on different marketplaces, which are linked with the EFPF
Marketplace Framework.

Tracking the user behaviour enables businesses to make productive decisions and develop
effective business strategies. This is an important feature in the digital platform world, which
is being used to support the long-term sustainability of the EFPF platform, beyond the span
of the project. The Accountancy Service tracks and traces users’ journey across the EFPF
ecosystem and collects data about the transactions that EFPF users make on different
marketplaces. The collected data will be used to charge a commission or referral fee from
the marketplace where the EFPF user carries out a business transaction. Note, the
Accountancy Service does not collect personal and/ or sensitive corporate data, instead the
idea is to collected anonymised transactional data. In addition, the Accountancy Service
contains a dashboard for the visualisation of the user behaviour.

A taxonomy is setup to identify the trackable user actions in which action items are listed in
‘subject, verb, object’ manner and these actions are grouped into two categories: 1) Platform
Actions and 2) Business Actions. Platform Actions are users’ basic interactions with the
EFPF Platform such as login, register, inviting other users, while Business Actions include
transactions realised between two companies such as product or service purchases,
business message exchanges (e.g. Order, Invoice), etc.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 35 / 96

Figure 17: Cashback process

The EFPF Platform adopts a cashback mechanism (see Figure 17) that calculates the
commission/referral amount paid back to the EFPF platform as a percentage of the overall
transaction that an EFPF user carried out on a marketplace.

Figure 18: Accountancy Service Architecture

The Accountancy Service architecture consists of the following modules:

• Log Aggregator: It gathers user behaviour data from various components of the EFPF
Platform, executes different transformations and filters the content, before sending the
data to the Log Persistence component

• Log Persistence: It stores, indexes, retrieves and manages user logs to be later
analysed. Since relational databases are not well-suited for managing log data, a
NoSQL database is preferred due to their flexible and schema-free document
structures, enabling analytics of the log data.

• Visualisation: It enables interactive dashboards, filters and advanced data analysis
and exploration of user logs.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 36 / 96

3.2.4 Matchmaking

The matchmaking and agile network creation mechanisms will be implemented for inter-
platform and cross-domain scenarios in EFPF. The matchmaking process is divided into 3
steps:

• Federated search, e.g. search for a partner or a product/service

• Recommendation service/ matching algorithm

• Service that enables the user to start and perform a business transaction e.g. a bidding
process

In the first step, the user of the EFPF platform is able to search for partners across the base
platforms, based on different criteria e.g. capabilities, geographic locations and
feedback/rankings or search for products and services. In the second step, the user is able
to get relevant recommendations for products/services or partners based on different
techniques of information pattern-matching. These techniques include information retrieval
techniques and similarity matching techniques and are based on Machine Learning (ML)
and data analysis. After finding the suitable products/services or partners, the users will be
able to evaluate them for several aspects/indicators, e.g. cost, reliability, quality, etc. Finally,
in the third step, the user decides how to proceed with business transaction execution.

 Step 1: Federated Search

The goal of a federated search solution in EFPF is to enable (partner) search functionality
over multiple sources (platforms) in the EFPF ecosystem, using one query. The architecture
for federated search and recommendation is derived considering the existing base-
platform’s features, data sources and other architectural requirements for a
recommendation engine. The selected architecture for federated search in EFPF follows the
index-time merge approach. It requires content from base platforms to be acquired into a
central index at the EFPF platform level, in order to perform platform level search for
products/services and partners/companies across the base platforms in the ecosystem.

The index-time merge architectural approach is also used to implement traditional enterprise
search systems, in which information can be retrieved across heterogeneous data sources
in an enterprise. Figure 19 depicts the index-time merge architecture for federated search.

Advantages of the architecture (shown in Figure 19) are as follows:

• Most search engines perform ranking by relevance, which is what users usually expect.
Through acquiring all data into a central index, sophisticated query enhancement and
relevancy algorithms can be applied, providing the user with excellent search results.

• The indexed data and ML algorithms can be used to provide product/services/partners
recommendations

Disadvantages of the index-time merge architecture can be summarised as follows:

• Acquiring the content from the various repositories and data sources of the base
platforms requires considerable efforts, as it would need to be done via read-only
processes on a schedule implemented in the data integration layer

• For different type of data sources, such as Resource Data Framework Schema
(RDFS), additional data connectors need to be implemented to enable the data
integration

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 37 / 96

Figure 19: The Index-Time Merge Architecture

In the following, the major technical decisions for the implementation of the federated search
architecture in EFPF are summarised:

• Index-Time Merge will be used as the federated search approach, which allows for
flexibility in terms of search functionality and next level of matchmaking/
recommendation engine implementation

• Apache Solr will be used as the central search-index implementation

• A common EFPF search ontology/ Solr-schema needs to be defined to capture all
required information about participants and value-units (domain knowledge)

• Apache NiFi will be used as the technology to implement the data integration flows
from base platform’s data sources

• Base platform technical partners will implement/configure input connectors for NiFi, to
ingest data to the central index

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 38 / 96

• Base platform technical partners will configure the frequency/schedule of the data
ingestion flow for their base platforms. Data ingestion frequency can be configured
hourly, daily or weekly, depending on the data velocity of the base platform

Figure 20 illustrates the high-level view of the EFPF Manufacturing Ontology to be
developed to enable an effective federated search in EFPF, that includes the following
concepts:

• A class/category of a product/service/capability has 0 or more properties

• A property describes the product/service class in detail (eg: length, height, certificates
etc)

• Each class has 1 or more item instances. These items represent the actual
product/service or capability that will be manufactured/provided by a party/company

• A party has attributes such as its legal-name, keywords and activity sector giving more
attributes for the matchmaking to execute

Figure 20: High Level View of the EFPF Manufacturing Ontology

 Step 2: Recommendation System

The second step of the matchmaking process is about enabling effective recommendation
services for products/services or partners to be used to initiate transactions. Following
diagram (Figure 21) gives a high-level design view of the recommendation system in EFPF.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 39 / 96

Figure 21: High Level View of the EFPF Recommendation System Enabling Matchmaking
Features in EFPF

The EFPF recommendation system includes the following components:

• EFPF Portal: EFPF Portal (see Section 3.2.2) is the application where users search
for products/services/partners

• User Activity Log Service: This component listens to user interaction events
generated from the applications (EFPF Portal) and stores the user interaction data,
e.g. item views and purchased items, in a way convenient for ML model creation

• Solr Index: In addition to maintaining the data about products/services and partners,
the system will also store all the user interactions data, which will be used for ML model
creation

• ML Model Creation: An ML library (Apache Mahout) will be used to create item-
similarity and user-similarity-based recommendations for users, including history of
user’s activity as a data source

• Recommendation Service: The ML models will be served via a REST API on top of
the Solr search API and will be based on similarity matching

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 40 / 96

The outcomes of the matchmaking will be presented to the user through an intuitive UI,
which will be integrated in the EFPF Portal.

 Step 3: Online Bidding Process

The online bidding process will be enabled through the EFPF Marketplace Framework. In
order to support matchmaking of a request for a product/service with the best available offer
at the EFPF platform level, the following components are included:

• The common schema/ontology that is implemented for federated search will be used
to collect data from base platforms (basic information about companies, products and
services etc.)

• An API that will provide post interfaces to enable the collection of data from base
platforms and an RDF store that will store the data in a format suitable for
offers/requests matching

• Apache NiFi instance to support the connection of API with basic platforms

• Rule-based mechanisms for inferencing knowledge from RDF store and Automated
Criteria Weighting and Best Score algorithms for online offers evaluation and matching
to requests. Apache Jena will be used to support inference over RDF

• An API capable to get other data related to offers that should be available on real-time
by Marketplace Frontend (prices, payment terms, delivery time etc.)

3.2.5 Governance & Trust

Governance services in EFPF support various processes and platform management
structure, e.g. supervision of data flows, alert management for tracking problems related to
processing of data flows, compliance with the business objectives, applicable laws and
regulations, etc. Governance services target policies and practices defining the platform
management. For example, governance services define assignment of responsibility (user’s
roles) and manage configuration policies, in an effort to control various risks in EFPF. By
contrast, compliance targets only the specifics of regulations and their requirements.

The governance framework in EFPF is grounded on literature review on several existing IT
governance and management models including the following:

• ITIL framework that provides guidance on how IT processes should be planned,
designed and implemented

• COBIT governance framework with a focus on business risk management

• ISO/IEC 27001/2 with a focus on implementation of organisation’s Information Security
Management System (ISMS), and

• Cloud computing (CC) governance model that identifies four key governance domains in
the cloud: Cloud Migration (CM), Information Security (IS), Risk Management (RM) and
Service Level Agreement (SLA) [BMH18]

The Governance Framework (GF) in EFPF is holistic by its nature, incorporating platform
organisational standards, strategic planning, business rules and norms of behaviour in the
ecosystem, software standards, regulatory requirements, etc. which all need to be
continuously monitored and assessed. Figure 22 illustrates the preliminary, high level
architecture of the EFPF GF. Apart from continuous platform monitoring and assessment,
the framework includes Roles and Responsibilities, Governance Registry and Governance

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 41 / 96

Decisions and Feedback services. Some examples of roles and responsibilities are:
Governance Manager (defines the roles and responsibilities; defines business process
lifecycle; monitor services, etc.), Business Process Designer (defines business process
choreography policies and choreography level agreements), Service Provider (register
services, discover services, manage SLA, monitor services and business process execution,
etc.), etc.

Depending on user’s roles in the platform ecosystem, users set priorities and focus (metrics
too), taking into account various elements from the Governance Registry in order to create
the best governance decisions and feedback. In addition, the Governance Manager sets
various policies in the system, including rating and ranking policies which are used for
calculating trust and reputation of the EFPF stakeholders.

Figure 22: Holistic Governance Framework in EFPF

Furthermore, Figure 23 illustrates the access management in the EFPF ecosystem, which
is done using the User Managed Access (UMA) protocol. UMA 2.0 is a federated
authorisation framework defined on top of OAuth 2.0. It defines how resource owners can
control access to a protected resource by clients, when access to the resource is based on
resource owner policies.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 42 / 96

Figure 23: UMA-based Access Management Supporting EFPF Governance Mechanisms

The following bullets list the components that govern the user-managed access for
resources/ HTTP endpoints.

• Policy Administration Point (PAP): PAP provides a set of Administration Console to
manage resource servers, resources, scopes, permissions, and policies. Part of this is
also accomplished remotely through the use of the Protection API. The EFPF security
admin will create the policies via the PAP

• Policy Decision Point (PDP): PDP provides a distributable policy decision point to
where authorisation requests are sent and policies are evaluated accordingly with the
permissions being requested. The output will be to either allow or deny requests, based
on the users permissions/roles

• Policy Enforcement Point (PEP): PEP provides implementations for different
environments to enforce authorisation decisions at the resource server side. The
Identity Server provides some built-in Policy Enforcers

• Policy Information Point (PIP): PIP helps the identity server to obtain attributes from
identities and runtime environment during the evaluation of authorisation policies. For
example, if the Identity Server needs attributes from the base platform to make a
decision then the PIP can perform this action

3.2.6 Business & Network Intelligence

Modern manufacturing processes are becoming increasingly data driven. This has led to
manufacturers demanding more digitalisation and data sharing from their supply chain. Data

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 43 / 96

sharing between digitally connected enterprises provide analysis opportunities that help in
understanding key drivers behind performance, planning and other important metrics. Such
analysis generates intelligence which is of high importance in Industry 4.0.

In EFPF, this intelligence is broken down into two categories:

• Business Intelligence (BI): BI can be described as actionable information that
enables better business decisions. BI provides historical, current and predictive views
of business operations of a company which informs future strategic decisions. Streams
of data from all business areas are integrated together and reported on in a single
interface. This method surfaces inconsistencies, overlaps and other areas of
opportunities for businesses to improve upon and grow. Moreover, businesses tend to
share some of these favourable BI metrics (especially about quality control, rejects,
material wastage, carbon footprint and audit performance etc.) with their prospects and
customers as a badge of quality work to win more businesses

• Network Intelligence (NI): NI can be understood as information that presents a higher-
level understanding of the position, structure and evolving interactions of a company
in a consortium, supply chain, industry association or a network of similar or
complimentary businesses. This is derived by analysing trends and interactions
between users (businesses in the case of EFPF) of the platform. This can be achieved
by tracking the B2B interactions taking place through the Data Spine. Some of the
outcomes of NI could be providing cluster segmentation by capabilities or risk. Another
one could be suggestion of ideal partners, customers or suppliers to companies based
on their interactions in the network

Figure 24: B&NI Service Architecture

It is essential for EFPF users to be able to generate, share and monitor intelligence
throughout the platform to make actual business possible and beneficial to all. The Business
and Network Intelligence (B&NI) service in EFPF is designed to extract transactional
information from multiple tools/service in the EFPF platform. This includes information from

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 44 / 96

the B2B transactions (e.g. which companies are actively seeking collaborations; which
capabilities are being sought, etc.) as well as B2C transactions (e.g. which products are
being discussed, etc.). These types of information can be captured for example, from the
Matchmaking (Section 3.2.4) and Marketplace (Section 3.2.3) services in the EFPF platform.
In this respect, the architecture of the B&NI service (shown in Figure 25) describes the
interaction with internal and external components in the EFPF platform. Based on this
architecture, the B&NI service connects to the Data Spine to collect the transactions (queries
and responses) carried out by the EFPF Matchmaking and Marketplace services. A link with
other EFPF services can also be established in the similar fashion, depending on the
relevance of their data.

The information captured by the B&NI Service (through dedicated APIs) is processed and
stored in a datastore, allowing specific analytic queries to be performed extract business
and network intelligence. An intuitive UI of the B&NI service allows users to tune their queries
according to their needs and the results of the user queries are also presented through the
UI.

In addition, the integration of 3rd party tools in the EFPF federation will allow the EFPF users
to take advantage of advance B&NI analytic capabilities offered by these tools. For example,
Valuechain’s iQluster platform is a product of Horizon 2020 funded project – Data Integrated
Supply Chain Optimisation. iQluster is a supply chain intelligence platform that enables
businesses to record and promote their business intelligence. iQluster further enables,
industry associations and / or supply chain networks to form cluster networks and generate
as well as share some network intelligence.

iQluster has been integrated as a 3rd party add-on to EFPF platform. iQluster is currently
available through the EFPF Portal. As a first step in proving the platform contribution towards
the project, a digital network of members from Hanse Aerospace (EFPF partner association)
has been created. Figure 25 shows the current dashboard of the network in the iQluster
platform. It enables other platform users to explore network level intelligence on ‘material
capabilities’, ‘certifications’ and geographical location of member companies.

This network intelligence is aimed to provide high-level guidance to EFPF users before
engaging with other companies on the platform.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 45 / 96

Figure 25: Hanse Aerospace Network Intelligence Dashboard

The intelligence generated through the iQluster platform will help EFPF users to explore the
network, make a decision on collaborating and develop trust backed by data (or derived
intelligence).The iQluster platform also allows EFPF users to intelligently navigate the
platform and reach, connect and collaborate with other businesses of interest. Figure 26,
shows a mind map visualisation of the Hanse Aerospace cluster, depicting different types of
connections in the network.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 46 / 96

Figure 26: Network Intelligence Visualisation in the iQluster Platform

3.2.7 Smart Contracting

The Blockchain and Smart Contracting component provides a trusted system for smart
contracting agile networks in the EFPF ecosystem. This component is based on the
distributed ledger technology systems - of varying TRL – provided by the base platforms.

Distributed ledger technology is – according to our experience and by design - a suitable
design mechanism [KRU04] for persistence when the system is situated in an environment
where three main conditions exist: 1) a distributed, immutable log of transactions is needed,
2) there is a need for distributed trust and 3) there is an incentive to manipulate data. A set
of generic user stories on which to base user stakeholder concerns following the
ISO/IEC/IEEE 42010 standard, have been developed:

• Blockchain-based Tracking of Shipments

• Blockchain-based Certificate of Origin (CoO)

• Circular economy scenarios

• Permission Management

• Audit trail of supply-chain data

• Product condition and maintenance tracking

From the above listed generic user stories, a first set of generic functionalities targeting the
needs of the Industry 4.0 domain have been derived. The first of the three functional
categories handle the management of identities, access rights and consent to view data.
The second category deals with the need to store business documents and production data
in a shared distributed ledger. The third set is about handling user-specified transaction rules
for the distributed ledger and smart contracts acting on data in the ledger and from external
sources, e.g. temperature sensor data for tracking a cold chain delivery.

The above functional categories address the following subsets of capabilities:

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 47 / 96

• Identity and access management

• Authenticate users and IoT devices

• Authorise access to data, consent management

• Confidential data

• Blockchain data store with verification of authenticity, origin and standards of data and
services

• Generic function for storing data items / documents

• Supply chain data

• Product data

• Business transactions

• Attach additional corroborating evidence to document

• Allow several parties to sign a data item/document

• Certificate of Origin (CoO)

• Smart contracting agile networks

• Use data available in the blockchain, from sensors, CoO and business
documents

• Select from a pre-defined set of contracts

• Trusted external data ("Oracles")

The base platform implementations that will be matured into the EFPF Blockchain and Smart
Contracting system are the Blockchain as a Service (BaaS) and the COMPOSITION
Blockchain.

In the COMPOSITION ecosystem, each marketplace has one blockchain, which is the store
of marketplace stakeholder agent public keys, an audit trail of agent CXL (COMPOSITION
eXchange Language) messages, and agent reputation data. A blockchain node may be
deployed by any marketplace stakeholder. The COMPOSITION Blockchain API controls the
private keys and addresses, and is accessible only to the stakeholder’s agents. The
blockchain nodes synchronise the state of the blockchain in a peer-to-peer network.

Regarding the Blockchain as a Service BaaS system it communicates through endpoints
with the blockchain nodes which form the private permissioned network. The BaaS exposes
an endpoint where it accepts requests and transactions from the EFPF platform which
serves as the connector between the Data Spine and the blockchain storage and services
(see Figure 27).

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 48 / 96

Figure 27: Context Diagram of the Blockchain and Smart Contracting System

 Functional View

A conceptual functional view of the system is shown below. The Blockchain and Smart
Contacting system has three main layers (see Figure 28):

• The Blockchain Implementation Layer, with the adapters for the use and management
of different blockchain implementations,

• The Blockchain Services, with the functional packages for the general categories of
user stories with supporting functionality such as connectors to the Data Spine; and

• The App Layer, comprised of specific applications built on top of the Blockchain
Services. These applications can be designed at the level of integration with ERP
system integrations, as standalone web applications, or mobile apps.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 49 / 96

Figure 28: Functional Packages of the Blockchain System

 Information View

A simple model to store and exchange data in a way that is agnostic to the blockchain
implementation has been followed

The data stream concept is similar to the one found in Multichain11 and OGC
SensorThings12. It is an ordered set of data items in JSON format. Each item is "tagged"
with a set of keys that can be used to filter the results. Each application using a blockchain
as a key-value or time series data store uses the same model to represent the data it stores
(see Figure 29). A data stream can represent a delivery process in which each item is an
event, or a data stream can represent a product and each item of the product is a log entry
of production steps, shipping, and post sales maintenance and repairs. When adding
external data, additional information such as sensor values, images, or results of consensus
algorithms can be supplied to corroborate the correctness of this data.

11 https://www.multichain.com/developers/data-streams/
12 https://www.opengeospatial.org/standards/sensorthings

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 50 / 96

Figure 29: Model for the Data Store in EFPF

 Security Perspective

The security perspective deals with issues such as the choice of and principles for the
consensus process (private, consortium, public), support for permissioned and permission-
less blockchains, and decision on where to generate and store private keys used to create
addresses and sign transactions. Addresses serve as secure identifier to send and receive
transactions (like an IBAN in banking transactions). These private keys are generally created
and stored in the users blockchain "wallet", either at the node or at a third party linked to the
other user identity (e.g. in the case of "web wallets").

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 51 / 96

Figure 30: Private Key and Address Management in Blockchain Applications

Figure 30 depicts three solutions for private key management:

• The private key is stored at the user node and no other application user identity is
needed to interact with the blockchain. In this case, messages can be signed and
addresses constructed at this node;

• The private key is stored at the middleware server. In this case, the application user
identity is matched to a blockchain private key (e.g. “web wallet”);

• The private key is stored at the user blockchain node, and the authorisation for the
application user identity is performed there.

In the first and third option, the users in the system are in control of their keys and addresses
and no centralised trust is required. The data in a blockchain can be trusted because
transactions conform to the defined transaction rules, act on data in the blockchain and the
consensus algorithm ensures that everyone agree on the correct state of the blockchain.
When data is entered from external sources, however, this data cannot necessarily be
trusted (e.g. sports results, financial data or sensor measurements). The security
perspective will also document the exploration of designs in order to enable the distributed
ledger and the smart contracts to trust data entered into the system, e.g. from the Data
Spine. This is commonly known as the "oracle problem".

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 52 / 96

 Blockchain Applications in EFPF

Figure 31: Supply Chain Mobile App

Currently two applications are built to serve as proof-of-concept and input to the architecture
design.

• Supply Chain Mobile App: The key feature of the mobile application demonstrator
(Figure 31) is to use physical interaction to address weak points or loopholes where
supply chain can become vulnerable. Added sensor data and biometric identification
are used to corroborate the transaction data (e.g. a receipt of received goods). As the
data is a representation of a transaction taking place in the physical world and entered
into the blockchain, it cannot be directly validated by the blockchain transaction rules
or smart contracts. To circumvent this reliability problem of physical interfaces, other
metadata is added such as Near Field Communication (NFC) tags, weight, images and
sign in with face or fingerprint ID to provide other evidence that the event took place

• Identity Management (IDM) based on Blockchain in EFPF: Blockchain technology
can be used to facilitate the user’s authentication and authorisation, enabling
decentralised, tamper resistant, inclusive, cost effective and user-controlled identity
services [DP18]. Using Blockchain as a Service BaaS, the intention is to remove the
complexity involved in setting up a blockchain network for each platform and to unify
the process of user registration and authorisation through a cryptographically protected
Distributed Ledger Technology (DLT) [SD16]. IoT devices are also subjects to
blockchain IDM Public keys can be used to issue digitally signed transactions through
the EFPF ’s agnostic layer, after a user has given her/his consent for such actions or
in cases where permissions are previously given and control over automatic actions is
required to ensure the system’s integrity and security. Thus, identities can be issued
to smart IoT devices, which can then be authenticated and interact with the blockchain
smart contract services

The data is also expected to be confidential and sensitive. Here, the system’s blockchain
private ledger is an ideal solution for this kind of storage. All the data on the permissioned
blockchain can be encrypted and only users with privileges and/or permissions can decrypt
and access this data. The EFPF blockchain technology is grounded on the Hyperledger
Sawtooth (see Figure 32), which provide the following features:

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 53 / 96

• Parallel Transaction Execution

• Event System

• Dynamic Consensus Algorithms

• Private Networks with the Sawtooth Permissioning Features.

Special notice should be given to the feature regarding the Permission policies which can
be applied on Sawtooth blockchain BC networks, which suits well the IDM needs.

Figure 32: Blockchain as a Service

3.2.8 Data Analytics

For any manufacturing company these days, it is critical to know and take advantage of the
data and information concerning machines, systems, processes and also customers. The
capture and processing of information allows manufacturing companies to plan and execute
manufacturing activities more efficiently, to effectively use available resources, streamline
their activities and processes, target relevant customers, etc.

In EFPF, the data analytics solutions are provided through a Data Analytic Dashboard, which
is accessible as an integral part of the EFPF Portal (as shown in Figure 33).

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 54 / 96

Figure 33: Snapshot of the Data Analytic Dashboard in the EFPF Portal

The Data Analytic Dashboard in EFPF is populated by a set of data analytic
tools/applications provided by the EFPF partners. These include the applications that deal
with factory data (sensor, machine, process, etc.) and applications that process and deal
with stakeholder’s data (customers, collaborators, etc.).

Figure 34: Structure of the Data Analytic Dashboard

The Data Analytic Dashboard is independent of or not concerned with the functionalities of
the actual analytic applications. It merely provides a unified interface to the EFPF users,
allowing them to make use of different analytic applications from the same place and (as far
as possible) in a similar way. Thus, any number and nature of applications can be made
accessible through the Data Analytic Dashboard.

The actual functionalities or internal mechanics of the analytic applications e.g. how the data
is accessed, how data is processed and stored, which algorithm is implemented, where the
application is hosted, how the results are presented to the user, etc. are left on the
application developer (EFPF partners) to decide. In this respect, the dashboard can be seen
as a container that provides unified access to multiple analytic applications provided by the
EFPF partners.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 55 / 96

The guiding principles for exposing analytic applications through the Data Analytic
Dashboard are the following:

• Applications needs to be offered through a user interface

• Applications need to be offered in plug-and-play type approach where minimal
customisations or configurations are expected from the users

• Applications need to be generic in the sense they serve the needs of wider user-base
i.e. applications should not be designed to serve specific needs of specific users

• Applications need to be offered in a simplified form keeping in mind the target users
i.e. manufacturing companies

The following data analytic applications are currently being made available through the
dashboard. The development, deployment and maintenance of these applications remain
responsibility of the respective partners in the EFPF project. These applications are primarily
selected based on their relevance to the users' needs and business/activities.

• Anomaly Detection: This analytic application uses ML techniques to detect anomalies
in the operating behaviour of machines

• Trend Analysis: This analytic application uses condition monitoring techniques to
identify trends in shop-floor activities

• Predictions of Machine Behaviour: This analytic application uses unsupervised ML
techniques to predict machine behaviours

• Customer Behaviour Prediction: This analytics application uses ML techniques to
analyse and predict customer behaviour

3.2.9 Workflow & Business Process

The workflow and business process solution in EFPF platform is called the Workflow and
Service Automation Platform (WASP). WASP allows users to model, automate and/or
orchestrate processes of different types involving manual activities carried out by people,
software-based processes, such as execution of (web) services, and manufacturing
processes where manufacturing activities and machines are represented through software
interface. WASP supports the automation of processes that are carried out within an
organisation as well as processes that spread across multiple organisation.

WASP offers a complete workflow and business process automation solution where users
can register to create an account and design workflows using an intuitive dashboard (see
Figure 35). Users can be the owners of their workflows that can be shared with other users
within the organisation. In extended functionality, users will be able to share their process
with other collaborators outside their organisation.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 56 / 96

Figure 35: Snapshot of WASP Interface

Through its internal user rights and access management system, WASP helps users specify
governance of workflows or parts of them (when working on the systems based on WASP).
Monitoring of executed workflows is also included at different levels of granularity (e.g.
activity, process, company, group).

Figure 36: WASP Architecture

The WASP platform is composed of the following modules:

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 57 / 96

• Process Design Studio: The WASP studio provides an intuitive user interface for the
design of workflows. Users can drag various Business Process Model and Notation
(BPMN) operators (e.g. activities, conditions, etc.) from the floating toolbox, and
connect them in a desired order. The toolbox elements can be dragged on the studio
canvas and connected with each other using BPMN operators, connectors, joins and
merges. Once designed, the workflows can be saved as standard BPMN based
processes that can be executed in the integrated execution engine.

• Execution Engine: WASP uses open source Camunda engine to execute BPMN
based processes. Camunda effectively serves as the core execution engine in WASP.
The communication with Camunda occurs via its REST API.

• Service Directory: The integrated service directory in the WASP platform provides
users the ability to create or expose web-services and link them with different activities
in the workflows. Users can set the visibility level of their services to make them
useable personally, at the organisation level or at the public level.

• Security and User Management: The security of the WASP platform is ensured by
implementing industry standard protocols for user authentication and authorisation.
The user management system is configured to support SSO within the EFPF
ecosystem.

Technical Foundation: The WASP platform web-based BPMN process design, execution
and monitoring environment takes advantage of cutting web technologies such as Liferay
7.1, JavaScript ES6, Angular 6.0 and HTML5. The foundations of the Process Design Studio
make use of an open source BPMN modeller framework called BPMN.io, which is a
rendering toolkit and web modeller for BPMN. It allows easy creation of BPMN2.0 diagrams
using a web-based modelling component, which is extended to add the functionality for
WASP. The service directory contains assets (Services) which are available within the
Process Design Studio for drag and drop into the workflows.

3.2.10 Smart Factory Tools and Services

The EFPF ecosystem supports the delivery and co-ordination of Smart Factory Tools and
Services from each of the base platforms and those provided by the EFPF partners. The
integrated smart factory tools and services address diverse needs of connected factories
and lot-size-one manufacturing scenarios and enables EFPF users to dynamically react to
market opportunities and events in the production environments to maximise the business
interests.
The initial development and integration efforts have focused on a subset of Tools and
Services, e.g. Industreweb Display, Symphony Event Reactor, Risk Analysis Service (RAS)
and Factory Connector Gateway Management Tool (FCGMT). These tools and services
collectively fulfil the Manufacture / Service Provision phase of a generic scenario that deals
with the collaborative production of an eBike product.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 58 / 96

Figure 37: Generic Scenario for the Development of Smart Factory Tools

Figure 37 shows the scope of the generic scenario in relation to the embedded EFPF pilots.
The combined usage of these tools and services will allow the end user to monitor production
and be notified or risks associated with failing to meet production deadlines.

This section describes the above-mentioned tools and services used in the generic scenario,
and how the API for each is applied within the architecture of EFPF Data Spine and platform.

 Industreweb Display

Industreweb Display is a platform independent, browser-based visualisation tool that is
designed to display production information and statistics from the Industreweb Collect server
such as:

• Production Faults

• Production Performance

• Waste

• Historical Reports

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 59 / 96

Figure 38: Industreweb Display Architecture

Industreweb Display consumes a Microsoft SignalR13 stream in order to display live values
from the production process. SignalR is a software library for Microsoft ASP.NET that allows
server code to send asynchronous notifications to client-side web applications. Pages are
constructed from HTML and AngularJS, where the AngularJS subscribes to values in the
SignalR payload. The SignalR server is implemented within the Industreweb Collect runtime
which is responsible for orchestrating data routing between the values coming from the Data
Spine Broker to the SignalR stream. The Industreweb Collect subscribes to the MQTT
broker and maps the received data to the SignalR connector (for more details, see Section
3.2.12.1). The architecture for Industreweb Display is shown in Figure 38.

13 https://docs.microsoft.com/en-us/aspnet/core/signalr/streaming?view=aspnetcore-3.0

http://www.efpf.org/
https://docs.microsoft.com/en-us/aspnet/core/signalr/streaming?view=aspnetcore-3.0

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 60 / 96

Figure 39 shows the wireframe design for the Industreweb Display screen used in the
generic scenario to visualise the status of the production process in relation to the production
schedule. Text in black refers to the “Collaborative Production Plan” designed by the
companies within the collaboration. Text in red refers to real time data updates. Text in green
refers to calculation done by service based on the average cycle time and the product
quantity target. By comparing the estimated completion and the deadline the service can
provide a colour code signal to reflect the status.

Figure 39: Wireframe of the IW Display Screen to Visualise the Status of Production
Progress

 Symphony Event Reactor

The Symphony Event Reactor gives the ability to trigger actions and alarms through its
Event Manager/ Alarm Manager in response to different kinds of event types. Moreover, it
offers a logging and lifecycle system for alarms. The data model of events is based on a
JSON Schema which is human-and-machine readable and dynamically updatable. The
event reactor is written in Python and has a GUI written in Blockly (google), a free and open
source client-side JavaScript library or creating block-based visual programming languages
(VPLs) and editors.

The Symphony Event Reactor leverages on a highly customisable logging system that
allows to handle events locally and synchronise them remotely, together with user activity
and alarm history.

The Symphony Event Reactor is composed of two separate software modules:

• Event Manager (EM): The EM executes custom rules that combine information
coming from different sources (local sensors and device monitors, user actions, video-
cameras, intrusion detection systems, etc.) and data brokers (e.g. AMQP, MQTT) to
determine actions to be taken (see Figure 40). Actions include actuations on field

http://www.efpf.org/
https://en.wikipedia.org/wiki/Visual_programming_language

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 61 / 96

devices, activation of scenarios, generation of events, notifications and alarms, and so
on

• Alarm Manager (AM): Alerts can be raised in order to present the situation to specific
users or user-groups. The system provides a configurable priority based alert routing
system that allows to target a single, a group or mixed sets of users with SMS, emails,
pop-ups, etc. (see Figure 41) The AM has an internal state machine to track each
alarm’s status (Open, Close, Acknowledged, Resolved, Delivered). Also, it logs and
keeps alarms history in a log database which is accessible through a REST interface.
Different notification channels for the AM are being developed

Figure 40: Symphony Event Reactor

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 62 / 96

Figure 41: Symphony Event Reactor's Alarm Manager

 Risk Analysis Service

The Risk Analysis Service (RAS) computes risk scores from data provided by REST API.
The current focus is on production risks using data streamed from factories. Data Spine
integration flows will be used to send production data to the RAS and to forward the resulting
risk scores to other tools within the EFPF ecosystem.

Design: The RAS makes use of risk recipes. These are data analysis modules which take
input data and produce risk scores related to the data. Recipes can be executed via REST
API, which is further detailed in the following section. Workflows can be configured in the
Data Spine to automatically execute recipes as soon as new data become available. In
some cases, data specific to the configured workflow may be required in order to compute
a risk score. For example, a recipe might require information about the deadline for a
process, and this data may not be produced by the relevant data stream. In this case, the
deadline would be configured in the RAS ahead of time.

Recipe-specific configurations can be made by POSTing to the following REST API
endpoint:

/recipe/<id>/configuration

The expected schema of the input parameters will be specified by each recipe. At a minimum
the configuration must include field which can be used as a key to uniquely identify the data
stream to which these configurations apply.

Data flow from and to the Data Spine: The diagram below illustrates the flow of data
between the Data Spine and the RAS, as well as within the RAS.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 63 / 96

Figure 42: Data Flow of the Risk Analysis Service

The data follows the following path:

1. The Data Spine calls the RAS REST API with GET request to the following endpoint,
where the input data is provided in the body of the request as a JSON object:

 /recipe/<id>/output

The expected schema of the JSON object is unique to each recipe
2. The JSON object will be passed to the compute function of the recipe specified using

<id>

3. The recipe will collect any relevant configuration information. Both the configuration
and JSON data will be used to compute the risk score associated with the given data

4. An object containing the risk score and other relevant data will be returned to the REST
API

5. The output object will be serialised and returned to the Data Spine

 Factory Connector Gateway Management Tool

The Factory Connector Gateway Management Tool (FCGMT) is a web component to be
integrated in the EFPF Portal for the purpose of managing the different IoT connectors and
gateways registered in the EFPF platform.

The most relevant functionalities provided by this tool are:

• Get the list of connectors and gateways registered in the EFPF platform

• Visualise the data schemas or particular data provided by the connectors and
gateways

• Subscribe to connectors and gateways to get its data as well as monitor the subscribed
data

• Register of new connectors and gateways through registry mechanisms

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 64 / 96

Figure 43: Architecture of the FCGMT

Figure 43 illustrates the architecture of the FCGMT. This is defined as a web component
based on a shared template which is later integrated and accessed from the EFPF Portal.

On one hand, the Service Registry is the component from the Data Spine that provides the
functionality required to register new factory connectors and gateways, so the FCGMT
“consumes” this component to provide a manual registration of any new connector and
gateway. The service registry may require extension or customisation to represent these
connectors and gateways since there are additional properties such as the physical location
of the connector that needs to be stored.

On the other hand, the MQTT broker component manages the network and exchanges the
messages from/to the connectors and gateways. This component is also part of the Data
Spine and provides mechanisms to get information from these resources, such as its
corresponding data models, as well as subscribe to its data.

In general terms, the FCGMT needs to consume services from the Data Spine as follows:

• Request to GET the list of connectors/gateways available on the platform: Service
Registry endpoint is required

• Request to GET the details of a particular connectors/gateway: Service Registry
endpoint is required

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 65 / 96

• Request to GET the data model associated to a particular connector/gateway: Service
Registry endpoint is required

• Request to POST a new connector/gateway to the platform: Service Registry endpoint
is required

• Request to PUT changes made in a particular connector/gateway to the platform:
Service Registry endpoint is required

• Request to DELETE a particular connector/gateway from the platform (Optional)

3.2.11 Secure Data Storage

The Secure Data Storage enables the persistent storage of data gathered through data
analytics and factory connectors tools. Access to this component is secured by the EFS
(Section 3.1.6), which is part of the Data Spine.

The Secure Data Storage is composed of the following components:

• Authorisation Guard (UMA): This component restricts the access to the stored data.
By implementing User-Managed Access (UMA) it enables fine-grained access control

• (Pseudo) Anonymiser: This component allows developers to store relevant data as
pseudonymised data sets (where personal data is involved)

• Privacy Analysis: The Privacy Analysis allows risk evaluation of the chosen form of
pseudonymisation for sensitive personal data

Figure 44: Secure Data Storage Architecture

The data to be stored, read, updated, or deleted is expected to use the NoSQL approach
and JSON (JavaScript Object Notation). As a technical foundation, MongoDB is used, and
respective queries can be used to filter data. Support for alternate databases is possible,
with the restriction that the mechanism for specifying access controls managing privacy
need to be able to address the database contents according to a URL mapping schema.

The complete component is setup as a docker image and usable anywhere, either in the
cloud or at a local site. All the mentioned subcomponents are present in every instance of

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 66 / 96

the component. For this reason, data is not available globally but has to be identified via an
access URL to identify the secure data storage instance that should be accessed.

Technical Foundation: Secure Data Storage manages the actual application of the
specified data access controls. It utilises the UMA FCGMT, in conjunction with the OAuth
and OpenID Connect standards, allowing data owners to specify access controls for stored
data with rules that function within the greater context of the EFPF ecosystem.

3.2.12 Factory Connectors & Gateways

In order to access data from the numerous data sources available within the manufacturing
facilities of members of the four base platforms, it is necessary to utilise a Connector or IOT
Gateway that can interface with the devices, sensors and systems. This can be made
available through a user defined data model for Smart Factory Tools to be able to operate.
The purpose of data provided by these connectors varies from production status, alerting,
Kanban / stock level monitoring, to energy consumption, machine/ process efficiency, and
more.

In EFPF there are three implementations of Factory Connectors & Gateways, supporting
between them the most widely used industrial standards and systems (e.g. OPC UA,
Siemens, Rockwell, Omron, Schneider etc.). The generic scenario presented in Section
3.2.10 utilises all three implementations for Production Status to be monitored across a
collaborative production process.

Figure 45 shows the high-level architecture of the three Connector / Gateways and the
interaction with the EFPF Data Spine.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 67 / 96

Figure 45: Factory Connectivity within EFPF

 Industreweb Collect

Industreweb (IW) Collect is a high-speed data engine that interfaces with a range of systems
and devices with the aim of extracting business critical data. The primary objective of IW
Collect is to solve getting data from sources that may prove to be normally difficult or require
a bespoke solution. All data sources are then transformed to a common data model to allow
processing and event triggering.

Data sources can include industrial control systems (e.g. PLC, CNC) both modern models
with Ethernet capability and legacy equipment, wireless networks and devices such as
ZigBee, and industrial networks such as Profinet, Profibus, Modbus and AS-interface. It can
also connect and interrogate databases such as MS SQL and MySql, and flat file formats
such as XML and JSON.

The architecture of the IW Collect is shown in Figure 46 which is based around the concept
of connectors to enable it to monitor a diverse range of data sources. Data acquired from
connectors interfaced with the production systems and sensors. IW Collect runs on a
Windows based embedded industrial PC platform that can be pre-installed on machines, or
retro-fitted to existing machines. It requires Microsoft .Net 4.0 and optionally Microsoft SQL
Server in order capture data. To commission the system, the industrial PC must firstly be
interfaced with the production data sources, which typically involves physically connecting
the required networks, and the installation of any intermediate 3rd party hardware such as
network switches or wireless transmitter/ receivers. Once this has been carried out the
interface settings are defined by editing the connector´s configuration file, which defines
each data source connector and its properties necessary to function.

Following this stage, the rules to orchestrate the collection and manipulation of data are
created which are based on logic events and subsequent actions. The system is then run in
the background as a Windows Service, constantly monitoring the manufacturing process.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 68 / 96

Figure 46: Industreweb Collect Architecture

Actions that IW Collect can trigger may include changing data in a connector, displaying an
alert on a screen, sending an SMS or email, or writing a value to a database.

For interfacing with the MQTT broker in EFPF the data is collected from the range of
production systems and sensors via the appropriate connector instance and mapped to the
MQTT connector instance data model. Upon data changing within the process or at a set
time interval the MQTT broker publishes the data using the “ProductionStatus” topic. This is
then subscribed to by the Smart Factory Tools and Services.

 Dynamic Factory Connectivity Service

The Dynamic Factory Connectivity (DyFC) primary objective is to enable the dynamic
information sharing about the manufacturing process status among independent companies
participating in a collaborative manufacturing network. The cross-factory information
exchange implemented by the DyFC, considers connectivity and interoperability between
various factory data sources and cloud-based services while addressing data control
concerns and minimising integration efforts.

DyFC provides secure two-way communication between the factory data sources and the
cloud-based platform and forms an on-premise endpoint. To monitor the collaborative
manufacturing process and provide interoperability, DyFC uses a meta-model (inspired by
ISA-95 standard) that enable the description of collaborative manufacturing processes as
well as the information to be shared with the rest of the partners. Besides, DyFC implements
an information exchange process, described in the following steps:

1. Upon receiving the collaborative manufacturing plan and the information required by
the production monitoring service, DyFC supports the Factory Engineer (FE) in
collecting the local factory data sources necessary for answering these information
requests

2. DyFC also supports the FE in aggregating these local data sources to match the
required semantic and syntactic descriptions, which is then mapped to the appropriate
information requested by the service

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 69 / 96

3. After the setup process is established, the progress status of the manufacturing
activities is automatically sent to the cloud-based service with the semantic and syntax
described by the collaborative manufacturing monitoring service

The DyFC is composed of three main components, as illustrated in Figure 47.

• The Collaborative Process Twin acts as the digital representation of the collaborative
manufacturing processes the company is involved in

• The Mapping and Aggregation Engine supports the FE in aggregating the local data
sources and map it to the corresponding information requested by the service

• Local Connectivity is responsible for connecting to the various local data sources,
using OPC UA protocol

In EFPF, the DyFC is used in the context of collaborative manufacturing network model
involving SMEs since it is mostly suited for sharing information about the progress of
manufacturing activities for monitoring and coordination purposes. DyFC targets
manufacturing SMEs since it takes into account some of their adoption challenges such as
data control.

Figure 47: Dynamic Factory Connectivity Components

 Symphony Hardware Abstraction Layer (HAL)

Hardware Abstraction Layer (HAL) is a software module that is part of NXW’s Symphony
platform14. It primarily abstracts the low-level details of various heterogeneous fieldbus
technologies and provides a common interface to its users. It adapts the device protocols
and provides the necessary logic to manage them accordingly to their respective constraints
(e.g. timing constraints). It also implements optimisations, e.g. avoid spamming the KNX

14 http://www.nextworks.it/en/products/brands/symphony

http://www.efpf.org/
http://www.nextworks.it/en/products/brands/symphony

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 70 / 96

bus15 with too many messages, pack contiguous Modbus reads into a single multi-register
read.

Figure 48: Symphony HAL

The HAL supports KNX, BACnet, Modbus-TCP and Modbus-RTU as well as, several other
proprietary control protocols. It can be extended by developing modules that can be
dynamically plugged into its core. It can be interconnected with specific field buses either
directly (via RS232/485 serial ports or GPIOs) or through the use of IP based gateways,
such as KNX IP router and/or interface, Modbus/TCP gateways.

The HAL component provides access to any available resources (sensors and actuators)
as datapoints. The datapoints are primitive objects with basic data type (int, float, boolean)
but devoid of any semantic annotation (physical object type, measurement unit, …) or are
presented according to the OGC SensorThings data format standard. The HAL supports
access via REST and gRPC and furthermore enables publish/ subscribe features via MQTT.

15 https://www2.knx.org/no/knx/association/what-is-knx/index.php

http://www.efpf.org/
https://www2.knx.org/no/knx/association/what-is-knx/index.php

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 71 / 96

4 Development & Deployment View

Figure 49: CI/CD Overview (adapted from www.atlassian.com)

The deployment of EFPF tools, services and components and the monitoring of the
configured components on the platform, fall within the Deployment and Operational
Viewpoints of the Architectural Description. The major architectural concerns here are on
run-time architectural qualities that affect the operability and maintainability of the EFPF
platform to ensure that the platform can support the large-scale experimentation activities
and organic growth of the ecosystem.

The management of cloud deployments of component systems is supported by DevOps
services [HF10]. A centralised repository is used for configuration and component
management. To support development, deployment and operations the project has installed
a GitLab instance. GitLab is a DevOps platform that offers functionality for project planning,
source code management as well as continuous integration (CI), continuous delivery (CD)
and monitoring.

The continuous integration and testing environment will be available for all EFPF base
platform and service providers but mainly used for the core EFPF infrastructure. The
repository will be successively populated, and adapted for integration of additional external
base platforms and/or tools.

The monitoring framework will provide a global EFPF model for Quality of Service (QoS)
with respect to the contractual obligations of an associated product quality model with micro
services. This will include run-time quality attributes based on the ISO/IEC 25010 standard
[ISO11] of product quality model, such as performance efficiency, reliability, security and
maintainability.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 72 / 96

Figure 50: EFPF CI/CD Pipelines

The EFPF project employs a microservice architecture. Each microservice is developed by
a dedicated team using its own parallel pipeline including test server, then be deployed to
production. CI pipelines are internal to the microservice. New versions may be delivered to
production using a suitable strategy and tested by EFPF in a black-box manner.

Marketplace services, base platforms and tools will be developed, deployed and managed
by the owners of these resources. The Data Spine and EFPF Portal are deployed on partner
infrastructure and development, tests and delivery are managed within GitLab.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 73 / 96

 Delivery

4.1.1 Dependencies

Figure 51: Integration Points Dependencies

4.1.2 Policies

The aspects of integration and delivery will be expressed in a set of policies; guidelines and
rules to govern how microservices in the EFPF platform must deal with delivery, versioning
and tests. They may also prescribe test coverage levels and a set of software metrics to
ensure the quality of deployed code.

4.1.3 Frequency

Each microservice will manage its own delivery schedule, from continuous deployment to
manual deployment, but the frequency of contract-changing/dependency-breaking updates
needs to be controlled as described above. A system-wide deprecation schedule with long
enough window until “sunset” may suffice. Conversely, parties responsible for a
microservice will have to commit to updates frequent enough to accommodate for sunset of
other services it depends on or urgent security fixes.

The policy for updates can include alternative strategies, depending on the type of update.
For component code updates/fixes, Rolling updates are used to fully replace existing
services, which will require high-availability roll-back and recovery services.  An alternative
strategy is to initially deploy the updates to a pre-selected subset of dependent service
clients (referred to as Canary release), which implies a multi-stage update procedure.
Finally, for API updates, the previous versions will be maintained in parallel to the updated
service interfaces (so called Blue-green deployment), following a deprecation period.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 74 / 96

4.1.4 Versioning

Given the microservice architecture of EFPF, the items that need to be version managed on
project/EFPF level are the connectors and contracts between microservices: interfaces, data
schemas and formats, protocols and standards. Code versioning internal to components are
mainly of interest for error reporting and debugging. Policies for versioning need to be
detailed, dealing with backward compatibility, depreciation schedules
and parallel versions. Versions of microservices that do not break the contract (API) but only
extend it or introduce bug fixes, performance optimisations or other internal changes, can be
handled differently from changes that may break dependent components.   

 Monitoring

Monitoring of user-experienced problems during operation in the experimentation and
exploitation phases of the EFPF system will use the Gitlab infrastructure that is already in
place. The Gitlab Service Desk allows external users to create issues without an account,
and support personnel and the developers responsible for a microservice to handle the issue
using the same system where development is managed. This can be further integrated with
team communication software like Slack for rapid collaborative problem-solving.

Continuous monitoring and logging infrastructure allow deep analysis of the performances
of deployed software that can both be carried out before the final deployment and during
real-world operation. As this kind of infrastructure often is integrated with the deployment
platform (AWS, Azure, Google Cloud, or others) the choice of monitoring infrastructure is
dependent on the choice of platform. There is also a wealth of free tools available to
automate the monitoring of the status of endpoints, e.g. Postman [POS19] or PHP Server
Monitor [PHP19]. In the exploitation phase, each stakeholder operating a microservice is
likely to already employ an operational monitoring tool and the monitoring may be done
through this.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 75 / 96

5 Base Platforms and Interface Contracts

 COMPOSITION

COMPOSITION (Ecosystem for Collaborative Manufacturing Processes – Intra- and Inter-
factory Integration and Automation) is a digital platform that provides:

• An Integrated Information Management System (IIMS) which optimises the internal
production processes by exploiting existing data, newly deployed sensors data,
knowledge and tools to increase productivity, optimise factory procedures and
dynamically adapt to changing market requirements.

• An online virtual ecosystem to support the interchange of data and services between
factories and their suppliers with the aim to optimise and invite new market actors into
the supply chain.

The COMPOSITION IIMS provides solutions to value chain related to predictive
maintenance, decision support and asset tracking. The COMPOSITION Ecosystem
provides solutions to supply chain related to smart waste management and an agent-based
marketplace that provides to its participants an automated transactions ecosystem by
offering an automated bidding process functionality enhanced by a blockchain application.

The deployment of COMPOSITION components is based on Docker [DOC19] containers
and their management is enabled by using Portainer [POR19]. The communication
mechanisms were based on HTTP protocol and on the setup of a RabbitMQ [RAB19]
message broker for MQTT and AMQP messaging. From security perspective, KeyCloak
[KEY19] for identity management and EPICA [EPI19] for access control were used. OGC
SensorThings [OGC19] was adopted for the description of tools and system-generated data,
and of sensors data as well.

The main components from the COMPOSITION project that are provided to EFPF
ecosystem are listed below:

• Marketplace Agents are primary actors of the COMPOSITION marketplace. They
typically instantiate the supply-chain formation strategy of industry stakeholders and
are therefore crucial for the success of the project inter- factory solutions. Two main
categories of agents can be defined a priori, depending on the kind of provided
services: Marketplace agents and Stakeholder agents. Marketplace Agents following
FIPA [FIP19] specifications, an Agent Management System (AMS) is a mandatory
component of every agent platform, and only one AMS should exist in every platform.
Stakeholder agents are deployed at the stakeholder’s premises and their purpose is to
fulfil the stakeholder’s interests.

• Matchmaker, the core component of COMPOSITION’s semantic framework, is used
by Marketplace’s agents in order to match customers with suppliers and requests with
offers in the COMPOSITION Marketplace. The component provides an Agent Level
Matchmaking Module, which handles a request by an agent (through HTTP calls) for
a requested service/product and after the appliance of a set of semantic rules in the
response to the agent with a list contains the agents who support a matching offer for
this request. Besides this, the component provides an Offer Matchmaking Module as
well. An agent sends a request for available offers’ evaluation to the Matchmaker which

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 76 / 96

applies automated weighted algorithms in order to rank the preferences of the
requester(price, delivery time, rating, payment and delivery terms etc.) and then
applies best score algorithms in order to suggest the best available offer. This
component enables the automated bidding process of the project.

• Analytic tools of COMPOSITION provide solutions related to predictive maintenance
and machine failures detection inside a factory, and solutions for supply chain
procedures optimisation. The Forecasting Tool offers different types of analytic
methodologies (Trend Analysis, Statistics, Local Outlier Factor, Machine Vibration
Diagnosis Profile, Density Based Spatial Clustering, Markov Chain Models, Genetic
algorithms). Moreover, a Deep Learning Toolkit based on ANNs has been deployed in
order to predict failures in industrial ovens and to provide price forecasting for recycling
materials. Finally, a web-based Visual Analytics tool has been implemented in order to
provide advanced visualisations of the aforementioned algorithms. The tool is
interactive with the end users and offers many types of graphs for data representation.

• Blockchain in COMPOSITION project aims to provide an audit trail for manufacturing
and supply chain data, enabling both product data traceability and secure access for
stakeholders. The implementation mechanism chosen for the blockchain was
Multichain [MUL19], an open-source blockchain implementing the Bitcoin [BIT19] API.
It provides configurable permissions for assets and consensus, high transaction
speeds and several useful abstractions for dealing with general time-stamped data
without the need to explicitly use cryptocash or other assets.

• Symphony Building Management System (BMS) is a complex system that requires
specific configurations to be put in place before running on a shop-floor. Internal
mechanisms are implemented to ensure scalability functionality with respect on the
number of sensors installed and the amount of data transmitted by these devices.
Nevertheless, the system is targeted on building and factory environments, that can
be big scopes, but somehow bounded on predictable scales. On the other hand, if a
single instance (currently set up for COMPOSITION) would not be enough for the
intended purposes, there is no limit to the number of BMS instances that could be
deployed, also because in a real application each factory has its own BMS instance.

 NIMBLE

NIMBLE stands for the collaborative Network for Industry, Manufacturing, Business and
Logistics in Europe. It provides infrastructure for a cloud-based, Industry 4.0, IoT-enabled
B2B platform on which European manufacturing firms can register, publish machine-
readable catalogues for products and services, search for suitable supply chain partners,
negotiate contracts and supply logistics. Participating companies can establish private and
secure B2B and Machine-to-Machine (M2M) information exchange channels to optimise
business workflows. The infrastructure is developed as an open source software under an
Apache type, permissive license. The governance model is a federation of platforms for
multi-sided trade, with mandatory interoperation functions and optional added-value
business functions that can be provided by third parties. Prospective NIMBLE providers can
take the open source infrastructure and bundle it with sectoral, regional or functional added
value services and launch a new platform in the federation.

In EFPF, the EFPF IDentity Provider (IDP) that enables user identification and authorisation
based on Keycloak, is setup and hosted by the partner SRFG (NIMBLE project coordinator).

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 77 / 96

SRFG is also running specifically created microservice for translation of tokens between the
four base platforms participating in the EFPF ecosystem.

 DIGICOR

The DIGICOR platform is an open ICT platform with tools and services to support the
management and control of collaboration networks. The platform provides basic services for
security, safety, governance and knowledge protection, with access to automation systems and
smart objects in the IoT by vertical integration via interfaces. It also provides a marketplace for
ad-hoc setup of collaborations.

Two DIGICOR middleware architectures have emerged from the DIGICOR project. For the
Aerospace domain a unified portal with integrated services and for the Automotive domain
consuming selected DIGICOR Tools and Components as discreet services through an external
platform.

5.3.1 Aerospace Domain Portal

The DIGICOR middleware architecture for the Aerospace use case uses micro-services as
an architecture style combined with event-driven architecture (EDA) as an architectural
pattern while leveraging Docker containers for deployment. The main drivers influencing the
architectural design decisions were:

• DIGICOR is a dynamic ecosystem, therefore it requires a very loosely coupled
architecture, supporting broadcast communication in a distributed style.

• The DIGICOR team is spread into several autonomous teams located in different
locations with various expertise, thus the use of micro-services architecture.

• Decoupling into many independent services allows for choosing technology for each
team independently as it is only the interface that matters.

• Many modern approaches (OPC UA as an example) are used in DIGICOR. The
implementation of the functionality can be done using different technologies. Using
small separate bounded services allow an easy redesign and integration of new
technologies if necessary.

• The DIGICOR platform requires flexibility in terms of deployment as well as high
availability. Micro-services run separately and can be updated without affecting the
overall platform.

Figure 52 shows the service interaction between Company, Collaboration and the Factory
Connector.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 78 / 96

Figure 52: DIGICOR Component Interaction

5.3.2 Automotive Domain Service Delivery

In the automotive use case, DIGICOR forms a synergy with the SMECluster business
platform. SMECluster provides Tools and Services via a marketplace available to its
members. This marketplace includes tools from multiple platforms. It is also enabled for
interoperability with DIGICOR tools and services, demonstrating how DIGICOR tools and
services can gain additional market exposure. The business model of SMECluster is to offer
opportunities to collaborate between members and to support this goal through readily
available technology that will provide productivity and quality improvements.

The SMECluster platform architecture is based on a federation of service libraries
orchestrated via calls from the integrated workflow engine and the client web UI, as
illustrated in Figure 53: SMECluster Component Interaction. Whilst technology agnostic, the
main stack runs on Microsoft .Net infrastructure under IIS, currently hosted on the
SMECluster dedicated server but can equally be hosted on a cloud infrastructure. Data
storage is provided by Microsoft SQL Server.

Figure 53 shows the interaction between services within the SMECluster platform, and those
from the DIGICOR platform.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 79 / 96

Figure 53: SMECluster Component Interaction

 vf-OS

vf-OS (Virtual Factory Operating System) is a digital platform that provides an operating
system targeted to the development of applications for the manufacturing companies. The
platform provides mechanisms that interact with the real factory assets, Cloud-based
services and the Internet to automate, enhance or optimise different types of processes and
activities that take place in manufacturing environments.

One of the key offerings of the vf-OS platform is a framework named virtual factory Open
Application development Kit (vf-OAK). The vf-OAK is composed of a set of integrated tools.
The central component of the vf-OAK is its Software Development Kit (SDK), an
environment for the development of applications and, generically, for the centralised access
of the vf-OS assets and functionalities. This SDK is complemented with a GUI that forms its
frontend Interface, the vf-OS Studio, which includes tools for code development, editors that
include features like Business Process Management Notation (BPMN), syntax highlighting
and drag-and-drop, debugging, and analysis of the developed code. The Studio also
encapsulates other tools developed in the scope of the project, such as a Frontend
Composer, a Process Designer, a System Dashboard, and provides access to the vf-Store
marketplace for development and publishing of the products.

In this respect, the main components of the vf-OS platform or the vf-OS OAK covering
different application development needs are listed below:

• vf-OS Process Enabler: Graphical environment for the developer to design vApps by
connecting different vf-OS assets

• vf-OS Frontend Environment: Graphical framework that facilitates the rapid
composition of stylesheets vApps’ frontends

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 80 / 96

• vf-OS Service Development Kit (SDK): The kernel and heart of the vf-OS
Framework, putting all needed vf-OS resources at the tip of the developers’ fingers by
means of libraries

• vf-OS Studio: vf-OS development IDE, which provides the necessary tools and means
to develop, publish, and deploy vApps on the marketplace

• vf-OS IO Toolkit: The toolkit helps developers in integrating and developing
connectors to devices (drivers) and other software (APIs)

• vf-OS Data Mapping: The data mapping component enables to design ETLs to
support data integration activities between different document schemas

• vf-OS Data Analytics: The data analytics component allows developing and deploying
models for solving analytics manufacturing problems and needs

• vf-OS Enablers Framework: This framework is used to facilitate the usage of
FIWARE, Manufacturing and vf-OS Specific Enablers which encapsulate repetitive
operations

After going through several validations (piloting and hackathons), the vf-OS platform is made
available through the EFPF Portal (https://efpf-portal.ascora.eu/). The vf-OS platform is
hosted by EFPF partner ICE, whereas the vf-OS Marketplace (separate web-based portal)
is hosted by the EFPF partner ASC.

 Interface Contracts Between EFPF and Base Platforms

This section describes the interface contracts between EFPF and the base platforms.
Interface contracts generally define the association between two components/APIs/services
and may consist of one or more clauses defining expected behaviours at method call
boundaries.

The purpose of defining interface contracts is to introduce a certain level of transparency
and expectancy in the EFPF platform, regarding the provisioning and behaviour of base
platform services. This means, that the base platform and EFPF developers can refer to
interface contracts (this section) to analyse any impact of their future updates.

5.5.1 Interface to Factory Data: Industreweb Display

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

SMECluster (DIGICOR)

Base Platform Service Industreweb Display

Base Platform Service
Provider

Control 2K Ltd

Expected Functionality (as-is)
of Base Platform Service

Asynchronous web dashboard for production KPI’s
and Operator displays

Status of Base Platform
Service

Implemented
Validated in DIGICOR and commercial scenarios.
The Industreweb Display has been customised to
provide production monitoring dashboard that is
integrated with EFPF Portal

http://www.efpf.org/
https://efpf-portal.ascora.eu/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 81 / 96

Base Platform Service
Ownership and Provisioning

Service provided, hosted, and maintained by
Control 2K

Base Platform Security
Protocols

Integrated security based on .Net Security
Provider

Dependent EFPF Services As a UI component, there is no EFPF service
dependent on Industreweb Display. The
Industreweb Display receives SignalR data from
an integrated Industreweb Collect Engine, which
subscribes to data on the EFPF broker (RabbitMQ
v3.7.18 – supports AMQP1.0 and MQTT3.1)

Artefacts depended upon or
exposed to dependents

Data format is: JSON by default but can be
defined by user

5.5.2 Shop-floor Connectivity: IndustreWeb Factory Connector

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

DIGICOR

Base Platform Service IndustreWeb Factory Connector

Base Platform Service
Provider

Control 2K Ltd

Expected Functionality (as-is)
of Base Platform Service

Connectivity with shop-floor assets (machines,
sensors etc) and porting of shop-floor data to
higher level information systems

Status of Base Platform
Service

Implemented
Validated in DIGICOR and commercial scenarios.
The connector is already used in EFPF to extract
shop-floor data and make it available to
applications through the Data Spine

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner C2K

Base Platform Security
Protocols

Custom security setup that can be tuned to user
needs

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• Risk Management Tool

• Event Manager

Artefacts depended upon or
exposed to dependents

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 82 / 96

5.5.3 Blockchain for Monitoring of Distributed Activities: COMPOSITION

Blockchain

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

COMPOSITION

Base Platform Service COMPOSITION Blockchain

Base Platform Service
Provider

CNet

Expected Functionality (as-is)
of Base Platform Service

Agent Blockchain API, generalized for use in other
contexts. The blockchain infrastructure is
enhanced in enhanced in EFPF support the
delivery tracking application

Status of Base Platform
Service

Implemented
Validated in COMPOSITION. The Blockchain
solution is being enhanced and generalised for
use in EFPF pilots

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner CNet. COMPOSITION
server hosted and maintained by partner FIT

Base Platform Security
Protocols

Multichain API 2.0, basic auth.

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• DApp POC

Artefacts depended upon or
exposed to dependents

Blockchain API (Swagger specification)

5.5.4 Agile Collaborations: Online Bidding Process

Contract Party – Service
Consumer

EFPF Marketplace

Contract Party – Service
Provider
(Base Platform)

COMPOSITION

Base Platform Service Online Bidding Process

Base Platform Service
Provider

LINKS

Expected Functionality (as-is)
of Base Platform Service

Automatic negotiation between service requesters
and suppliers

Status of Base Platform
Service

Implemented
Validated in COMPOSITION. The bidding process
is being generalised for use in EFPF pilots and
open call experiments

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 83 / 96

Base Platform Service
Ownership and Provisioning

Service provided maintained for the EFPF project
by partner LINKS

Base Platform Security
Protocols

HTTPS, security by COMPOSITION Border
Gateway

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Integrated Marketplace Framework

• EFPF Bidding Process UI

• CERTH Matchmaker

Artefacts depended upon or
exposed to dependents

HTTP REST API, AMQP Broker, Proprietary data
format

5.5.5 Data Analytics: Deep Learning Toolkit

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

COMPOSITION

Base Platform Service Deep Learning Toolkit

Base Platform Service
Provider

LINKS (COMPOSITION and EFPF Partner)

Expected Functionality (as-is)
of Base Platform Service

Predictive Maintenance and Price Prediction of
waste material.

Status of Base Platform
Service

Implemented
Validated in COMPOSITION. The toolkit is
integrated with the EFPF portal

Base Platform Service
Ownership and Provisioning

Service provided maintained for the EFPF project
by partner LINKS

Base Platform Security
Protocols

No security provided within the tool, security
provided by COMPOSITION border gateway

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• Data Analytics Dashboard

• Data Analytics (CERTH)

Artefacts depended upon or
exposed to dependents

HTTP Rest/RPC, proprietary data format

5.5.6 Indexing Service: NIMBLE Indexing Service API

Contract Party – Service
Consumer

EFPF Marketplace

Contract Party – Service
Provider
(Base Platform)

Nimble

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 84 / 96

Base Platform Service Nimble Indexing Service API

Base Platform Service
Provider

SRFG

Expected Functionality (as-is)
of Base Platform Service

Product provisioning

Status of Base Platform
Service

Implemented
Validated in NIMBLE

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner SRFG

Base Platform Security
Protocols

HTTPS, OAuth2, OpenID

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Integrated Marketplace Framework

Artefacts depended upon or
exposed to dependents

5.5.7 Catalogue Service: NIMBLE Catalogue REST API

Contract Party – Service
Consumer

EFPF Marketplace

Contract Party – Service
Provider
(Base Platform)

Nimble

Base Platform Service Nimble Catalogue REST API

Base Platform Service
Provider

SRFG

Expected Functionality (as-is)
of Base Platform Service

Product image provisioning

Status of Base Platform
Service

Implemented

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner SRFG

Base Platform Security
Protocols

HTTPS, OAuth2, OpenID

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Integrated Marketplace Framework

Artefacts depended upon or
exposed to dependents

5.5.8 Product Provisioning (vf-OS)

Contract Party – Service
Consumer

EFPF Marketplace

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 85 / 96

Contract Party – Service
Provider
(Base Platform)

vf-OS

Base Platform Service vf-OS Marketplace

Base Platform Service
Provider

ASC

Expected Functionality (as-is)
of Base Platform Service

Product provisioning

Status of Base Platform
Service

Implemented
Validated in vf-OS. The marketplace is already
integrated with the EFPF Portal through single
sign-on and integrated marketplace search service

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner ASC

Base Platform Security
Protocols

HTTPS, API token

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Integrated Marketplace Framework

Artefacts depended upon or
exposed to dependents

5.5.9 Product Provisioning (SMECluster)

Contract Party – Service
Consumer

EFPF Marketplace

Contract Party – Service
Provider
(Base Platform)

DIGICOR/SMECluster

Base Platform Service Search for Products

Base Platform Service
Provider

Control 2K

Expected Functionality (as-is)
of Base Platform Service

Product search and provisioning

Status of Base Platform
Service

Implemented
Validated in commercial scenarios. The product
provisioning service is integrated with EFPF Portal
through the integrated marketplace search service

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner Control 2K

Base Platform Security
Protocols

HTTPS

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Integrated Marketplace Framework

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 86 / 96

Artefacts depended upon or
exposed to dependents

5.5.10 Event Reactor: Symphony Event Reactor

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

Symphony (External Platform)

Base Platform Service Symphony Event Reactor

Base Platform Service
Provider

Nextworks

Expected Functionality (as-is)
of Base Platform Service

Ability to trigger actions and alarms through Event
Manager/Alarm Manager modules, depending on
the type of the event. It has logging and lifecycle
systems for alarms

Status of Base Platform
Service

Implemented
Validated in commercial applications. The Event
Reactor is being integrated in the EFPF shop-floor
connectivity solution

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained by
Nextworks

Base Platform Security
Protocols

Custom security setup that can be tuned to user
needs

Dependent EFPF Services Input to/from EFPF message broker, messages
from Event Broker are mapped within the Data
Spine (NiFi)

Artefacts depended upon or
exposed to dependents

APIs: REST
Communication protocols: MQTT, AMQP

5.5.11 Hardware Abstraction: Symphony Hardware Abstraction Layer

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

Symphony (External Platform)

Base Platform Service Symphony Hardware Abstraction Layer (HAL)

Base Platform Service
Provider

Nextworks

Expected Functionality (as-is)
of Base Platform Service

It primarily abstracts the low-level details of
various heterogeneous fieldbus technologies and
provides a common interface to its users.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 87 / 96

Status of Base Platform
Service

Implemented
Tested and validated in production environment

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained by
Nextworks

Base Platform Security
Protocols

Custom security setup that can be tuned on user
needs

Dependent EFPF Services Output published to the EFPF Broker

Artefacts depended upon or
exposed to dependents

APIs: REST, gRPC
Communication protocols: MQTT, gRPC, KNX,
BACnet, Modbus, etc.
Data formats: OGC SensorThings, SAREF,
SAREF4B, proprietary

5.5.12 Risk Analysis: SSM Risk Management Tool

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

SSM (External Platform)

Base Platform Service SSM Risk Management Tool

Base Platform Service
Provider

University of Southampton IT Innovation Centre

Expected Functionality (as-is)
of Base Platform Service

Risk Analysis tool

Status of Base Platform
Service

Implemented
Validated in previous EU projects

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner University of
Southampton IT Innovation Centre

Base Platform Security
Protocols

Custom security setup that can be tuned to user
needs

Dependent EFPF Services N/A

Artefacts depended upon or
exposed to dependents

API, security protocol, communication protocol…

5.5.13 Partner and Capability Search: Federated Search

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

NIMBLE

Base Platform Service Search service

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 88 / 96

Base Platform Service
Provider

Salzburg Research (SRFG)

Expected Functionality (as-is)
of Base Platform Service

Federated Search: Keyword based/facet-based
search on the products/services and companies

Status of Base Platform
Service

Implemented
Validated in NIMBLE. Federated Search data
indexing Nifi workflows, Apache Solr index are
already created for EFPF platform and hosted by
SRFG

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner Salzburg Research

Base Platform Security
Protocols

API protected by authorization headers

Dependent EFPF Services Product/Service/Company search in EFPF portal,
Product Recommendation Service
Matchmaking Service

Artefacts depended upon or
exposed to dependents

REST API
JSON message format

5.5.14 Identity Service: Identity Service and Central Identity Provider

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

NIMBLE

Base Platform Service Identity-Service & Central Identity Provider
(Keycloak)

Base Platform Service
Provider

Salzburg Research (SRFG)

Expected Functionality (as-is)
of Base Platform Service

User authentication & authorization, Single Sign
On (SSO)

Status of Base Platform
Service

Implemented
Already integrated with EFPF platform and
provides user authentication to EFPF portal and
single-sign-on to the EFPF users across the
connected base-platforms.

Base Platform Service
Ownership and Provisioning

Service provided, hosted and maintained for the
EFPF project by partner Salzburg Research
(https://efpf-security-portal.salzburgresearch.at/)

Base Platform Security
Protocols

HTTPS, security provided by Keycloak identity
management server

Dependent EFPF Services • EFPF portal login

• User federation in EFPF platform

http://www.efpf.org/
https://efpf-security-portal.salzburgresearch.at/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 89 / 96

Artefacts depended upon or
exposed to dependents

Identity Service REST API
Keycloak integration workflow with base-platform
to provide user-federation and SSO

5.5.15 Factory Connectivity: Industreweb Collect

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

SMECluster (DIGICOR)

Base Platform Service Industreweb Collect

Base Platform Service
Provider

Control 2K

Expected Functionality (as-is)
of Base Platform Service

Interfaces with all automation systems within the
manufacturing facility including legacy, wireless
sensor, network protocols and OPC UA

Status of Base Platform
Service

Implemented
Validated in commercial, DIGICOR and other past
EU projects. The Industryweb Collect solution is
being used in the EFPF shop-floor connectivity
solution

Base Platform Service
Ownership and Provisioning

Service provided, hosted, and maintained by
Control 2K

Base Platform Security
Protocols

Integrated security based on .Net Security
Provider

Dependent EFPF Services Publishes data to EFPF broker (RabbitMQ v3.7.18
– supports AMQP1.0 and MQTT3.1)

Will subscribe with EFPF Service Registry via
REST interface

Artefacts depended upon or
exposed to dependents

• Communication protocol is: User definable
data model including OPC UA using
PubSub over MQTT/MQTTs and
AMQP/AMQPs or OPC UA client/server

• Data format is: JSON but default but can be
defined by user

• Data models: Production data model (ISA-
95 inspired model–used in DIGICOR)

5.5.16 Blockchain as a Service

Contract Party – Service
Consumer

EFPF

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 90 / 96

Contract Party – Service
Provider
(Base Platform)

CERTH

Base Platform Service Blockchain-as-a-Service (BaaS)

Base Platform Service
Provider

CERTH (COMPOSITION and EFPF Partner)

Expected Functionality (as-is)
of Base Platform Service

BaaS provides services related to Registration
Management, Identity Management and
Permission Management

Status of Base Platform
Service

Implemented
Tested and validated within other projects –
Integrated with EFPF registration service

Base Platform Service
Ownership and Provisioning

BaaS functionalities are provided, maintained and
hosted by CERTH.

Base Platform Security
Protocols

Security based on authentication JWT (JSON Web
Token)

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Portal – Registration process

• It will also be used in
o Inform/Consent and Revoke Consent
o Permission management
o Circular Economy scenario

Artefacts depended upon or
exposed to dependents

• Provide a REST API

• Security is protocols JWT (JSON Web
Token)

• Communication protocol is HTTPS / RPC

• Data format is JSON

5.5.17 Data Analytics: Data and Visual Analytics Toolkit

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

COMPOSITION

Base Platform Service Data and Visual Analytics Toolkit

Base Platform Service
Provider

CERTH (COMPOSITION and EFPF Partner)

Expected Functionality (as-is)
of Base Platform Service

Provide analytics services to pilot partners in
Circular Economy scenario. Services are: fill level
sensors’ monitoring and trend analysis of fill level,
tonnage forecasting, price forecasting based on
Deep Learning, vibration sensors monitoring and
vibration profile real time analysis

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 91 / 96

Status of Base Platform
Service

Implemented
Tested and validated within COMPOSITION –
Integrated with EFPF and it is available through
EFPF portal to the corresponding users

Base Platform Service
Ownership and Provisioning

Both analytics services and sensors provided and
maintained by CERTH. Only price forecasting is
maintained by LINKS. CERTH hosts the visual
analytics platform and the sensors are deployed
on KLEEMANN and ELDIA premises.

Base Platform Security
Protocols

Security is based on Keycloak identity and access
management

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• EFPF Portal – data analytics section

Artefacts depended upon or
exposed to dependents

• Available to the users as a web-based UI
(Chart.js and D3.js are used)

• Security is based on Keycloak

• Communication protocols are both HTTPS
and MQTT for sensors and analytics
communication

• Data format is JSON for sensors and
analytics communication – Interaction with
end users is possible through UIs

5.5.18 Semantic Framework

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

COMPOSITION

Base Platform Service Semantic Framework

Base Platform Service
Provider

CERTH (COMPOSITION and EFPF Partner)

Expected Functionality (as-is)
of Base Platform Service

Provide information about COMPOSITION
companies and services. Moreover, the framework
provides the matchmaking functionalities of
COMPOSITION project

Status of Base Platform
Service

Implemented
Tested and validated within COMPOSITION –
Integrated with EFPF Federated Search service by
using Apache NiFi

Base Platform Service
Ownership and Provisioning

Service provided and maintained by CERTH, it is
hosted by FIT in EFPF Portainer/Server with other
COMPOSITION components. This server is
maintained by FIT as well.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 92 / 96

Base Platform Security
Protocols

Security based on authentication using OpenID
Connect provided by FIT

Dependent EFPF Services The following EFPF tools/services make use of
this service:

• Matchmaker component for federated search
and online bidding process

• Marketplace for online bidding process

Artefacts depended upon or
exposed to dependents

• Provide a REST API

• Security protocol is Basic Auth

• Communication protocol is HTTPS

• Data format is JSON

5.5.19 Factory Connectivity: Dynamic Factory Connector

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

DIGICOR

Base Platform Service Dynamic Factory Connector

Base Platform Service
Provider

fortiss

Expected Functionality (as-is)
of Base Platform Service

Aggregates and maps local factory data sources
to the information required/specified by the
services

Status of Base Platform
Service

Implemented
Tested and validated within DIGICOR – Integrated
with EFPF production monitoring scenario using
Apache NiFi

Base Platform Service
Ownership and Provisioning

Service provided, hosted, and maintained by
fortiss

Base Platform Security
Protocols

OPC UA security set up that can be adjusted

Dependent EFPF Services Publishes data to EFPF broker (RabbitMQ v3.7.18
– supports AMQP1.0 and MQTT3.1)

Artefacts depended upon or
exposed to dependents

• Communication protocol is: OPC UA
PubSub over MQTT/MQTTs and
AMQP/AMQPs, OPC UA client/server

• Data format is: JSON

• Data models: Production data model (ISA-
95 inspired model–used in DIGICOR)

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 93 / 96

5.5.20 Supply Chain Visibility: iQluster

Contract Party – Service
Consumer

EFPF

Contract Party – Service
Provider
(Base Platform)

iQluster

Base Platform Service iQluster

Base Platform Service
Provider

Valuechain Ltd

Expected Functionality (as-is)
of Base Platform Service

Collaboration and intelligence platform that
streamlines intercompany communication and
securely captures multi-tier supply chain
intelligence so that organisations can increase
network competitiveness.

Status of Base Platform
Service

Implemented
Tested and validated within commercial scenarios
– Integrated with EFPFSingle-Sign-On

Base Platform Service
Ownership and Provisioning

Service provided, hosted, and maintained by
Valuechain

Base Platform Security
Protocols

Keycloak based security access and authorisation

Dependent EFPF Services Matchmaking (Federated Search) and Business
and Network Intelligence Service

Artefacts depended upon or
exposed to dependents

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 94 / 96

Annex A: History

Document History

Versions

V1.0

• Updates based on internal and external (technical reviewers’) comments
and quality check.

• Further extensions include Service Contract descriptions and relations to
base platform services and tools & inclusion of Annex C & D

V0.9

• Aggregated inputs from partners based on comments from the second
internal review

V0.85

• Aggregated inputs from partners based on comments from the first internal
review and sent for the second internal review

V0.81

• Did basic formatting, updated references and sent for the first internal
review

V0.8

• Aggregated inputs from partners based on review comments
V0.71

• Restructured the document and added review comments
V0.7

• Added contributions from SRFG (Section 3.2.5), FIT (Section 0)
V0.6

• Added contributions from SRFG (Section 3.1.2, 3.1.6, 3.2.4, 3.2.5, 4.1.2)
V0.5

• Added contributions from CNET and CERTH (Section 3.2.7, 4, 5.1.1)
V0.4

• Consolidated contributions from FIT (Section 1, 2, 3.1 and 3.2.1), ASC
(Section 3.2.2, 3.2.3 and 3.2.11), VLC (Section 3.2.6), C2K (Section 3.2.10,
3.2.10.1, 3.2.12, 3.2.12.1), NXW (Section 3.2.10.2, 3.2.12.3), ALM (Section
3.2.10.3), AID (Section 3.2.10.4), FOR (Section 3.2.12.2)

V0.3

• ICE contribution under Section 3 under data analytics
V0.2

• ICE contribution under Section 2, 3 and 5.4 (Section numbers from the
latest version of this document)

V0.1

• Base structure and initial content added by FIT

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 95 / 96

Contributions

FIT:

• Rohit Deshmukh

• Alexander Schneider
ICE:

• Usman Wajid
SRFG:

• Violeta Damjanovic-Behrendt

• Nirojan Selvanathan

• Dileepa Jayakody
ASC:

• Norman Wessel

• Brian Clark
VLC:

• Happy Dudee
CNET:

• Mathias Axling

• Matts Ahlsen
CERTH:

• Alexandros Nizamis

• Sofia Terzi
C2K:

• Simon Osborne
NXW:

• Matteo Pardi

• Alì Nejabati
ALM:

• Carolyn Langen
AID:

• Fernando Gigante
FOR:

• Nisrine Bnouhanna
SRDC:

• Senan Postaci

• Yildiray Kabak
LINKS:

• Luigi Giugliano

• Jure Rosso

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 96 / 96

Annex B: References

[Hil00] Hilliard, Rich. "Ieee-std-1471-2000 recommended practice for architectural
description of software-intensive systems." IEEE, http://standards. ieee. org 12.16-20
(2000): 2000.

[IEEE 42010, 2011] May, I. S. O. Systems and software engineering–architecture
description. Technical Report. ISO/IEC/IEEE 42010, 2011.

[RW05] Rozanski, Nick, and Eoin Woods. "Software Systems Architecture: Viewpoint
Oriented System Development." (2005).

[Mor10] Morrison, J. Paul. Flow-Based Programming: A new approach to application
development. CreateSpace, 2010.

[Shu86] Shu, Nan C. "Visual programming languages: A perspective and a dimensional
analysis." Visual Languages. Springer, Boston, MA, 1986.

 [KRU04] Kruchten, P. (2004). The Rational Unified Process: An Introduction. Addison-
Wesley Professional.

[DP18] Dunphy, P. and Petitcolas, F. A. P. (2018): A First Look at Identity Management
Schemes on the Blockchain, in IEEE Security & Privacy, vol. 16, no. 4, pp. 20-29.

[SD16] Samaniego, M. and Deters, R. (2016): Blockchain as a Service for IoT. 2016 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), Chengdu, 2016, pp. 433-436.

[HF10] Humble, J., Farley, D (2010). Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, Addison-Wesley Professional.

[ISO11] ISO (2011). ISO/IEC 25010:2011. https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010. Accessed Sept 2019.

[POS19] Postman Inc. (2019). Intro to Monitoring.
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors. Accessed Sept
2019.

[PHP19] phpservermonitor.org (2019). PHP Server Monitor: Open source tool to monitor
your servers and websites, http://www.phpservermonitor.org. Accessed Sept 2019.

[DOC19] Docker Enterprise Container Platform. https://www.docker.com/ Accessed Sept
2019.

[RAB19] RabbitMQ Open-source message-broker. https://www.rabbitmq.com/ Accessed
Sept 2019.

[POR19] Portainer for Docker Management. https://www.portainer.io/ Accessed Sept 2019.
[KEY19] Keycloak Open-source identity and access management solution

https://www.keycloak.org/ Accessed Sept 2019.
[EPI19] Efficient and Privacy-respectful Interoperable Cloud-based Authorization.

http://tredisec.eu/content/epica Accessed Sept 2019.
[OGC19] OGC SensorThings API. http://www.opengeospatial.org/standards/sensorthings

Accessed Sept 2019.
[FIP19] FIPA Foundation for Intelligent Physical Agents. http://www.fipa.org/ Accessed Sept

2019.
[MUL19] MultiChain Enterprise Blockchain. https://www.multichain.com/ Accessed Sept

2019.
[BIT19] Bitcoin Open-source P2P money. https://bitcoin.org/ Accessed Sept 2019.

http://www.efpf.org/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.%20Accessed%20Sept%202019
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.%20Accessed%20Sept%202019
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
http://www.phpservermonitor.org/
https://www.docker.com/
https://www.rabbitmq.com/
https://www.portainer.io/
https://www.keycloak.org/
http://tredisec.eu/content/epica
http://www.opengeospatial.org/standards/sensorthings
http://www.fipa.org/
https://www.multichain.com/
https://bitcoin.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 97 / 96

[BMH18] Y. Bounagui, A. Mezrioui, H. Hafiddi, 2018. “Toward a Unified Framework for Cloud
Computing Governance: An Approach for Evaluating and Integrating IT Management
and Governance Models” In Computer Standards & Interfaces (2018). doi:
https://doi.org/10.1016/j.csi.2018.09.001

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 98 / 96

Annex C: Platform Profiles

Platform* Component
Name*

Description Maturity
Level* (TRL
0-9)

Exposed Interfaces* (Protocol |
Data Model | Data Format | Access
Control | Identity Provider)

Dependency* Programming
Environment

Deployment Partner Contact
Person

Tec
hnic
al

Doc

Composition Deep
Learning

Toolkit

Maintenance prediction using deep learning
techniques

TRL4 HTTP, RPC| JSON |User Defined | | | Pyro-ns |
External identity

provider

Python, Keras,
TensorFlow

Docker Image LINKS luigi.giugli
ano@links

foundation
.com

link

Composition Composition
Marketplace

Multi agent based marketplace TRL 5 HTTP AMQP MQTT | JSON | User
defined | Keycloak OIDC | |

Platform
AMQP&MQTT
Broker | External
identity provider

Python Docker Image LINKS jure.rosso
@linksfou
ndation.co
m

Composition Log
Oriented

Architecture

Block-chain architecture for manufacturing &
supply chain

TRL4 HTTP | JSON | JSON | | Multichain,
COMPOSITION

intra-factory Auth

Python Docker image CNET mathias.a
xling@cne

t.se

Composition Big Data
Analytics

Tools
(LinkSmart
Learning

Agent)

Toolset to support various business
intelligence tasks

TRL4 HTTP | JSON | OGC-ST and
Proprietary | OpenID Connect |

Keycloak, MQTT | JSON | OGC-ST
and Proprietary | MQTT Auth |
Keycloak

Python, Java Docker

image, JAR
FIT

link

Composition Semantic
Matchmakin

g
Framework

Interoperability, customers/suppliers
matching, online offers' evaluation - core

component of COMPOSITION Agent
Marketplace

TRL5 HTTP |JSON | Proprieraty |HTTPs
Basic Auth | Keycloak |JSON |

Proprieraty |OpenID Connect |
Keycloak |

Self-contained
Ontology

Java, OWL Docker Image CERTH alnizami@
iti.gr

link

Composition Forecasting

Toolkit

Prediction engine for predictive maintenance

and supply chain optimization(trend analysis,
statistics, markov models, LOF etc.) - part of
COMPOSITION data analytics tools

TRL5 HTTP | JSON | OGC Sensor Things |

MQTT Auth | Keycloak, MQTT |
JSON | OGC O&M | Isolated
Container | None

Platform MQTT

Broker

Python Docker Image CERTH alnizami@

iti.gr

link

Composition LinkSmart
Service

Catalog

Service registry and discovery TRL7 HTTP | JSON | Proprietary | OpenID
Connect | Keycloak, MQTT | JSON |

Proprietary | MQTT Auth | Keycloak

Platform MQTT
Broker

Go Docker
Image, Binary

Distribution

FIT farshid.tav
akolizadeh

@fit.fraun
hofer.de

link

Composition/

Symphony

Hardware

Abstraction
Layer (HAL)

Gateway for different field protocols (e.g.

KNX, Modbus)

TRL 9 REST, CORBA, gRPC, raw |

proprietary (oneM2M/SAREF-based)
| proprietary | proprietary (OAuth) |
Proprietary

Symphony base

infrastructure

C++, Python, Go Binary

(Docker
image coming
soon)

NXW m.pardi@

nextworks.
it

Composition/
Symphony

Data
storage

Data storage with pluggable back-ends
(Postgres, Elastic Search, Cassandra)

TRL 9 REST, raw, AMQP, MQTT | None |
SQL, JSON | proprietary |
Proprietary

Symphony base
infrastructure +
HAL |

Python Docker
Image, Binary
Distribution

NXW m.pardi@
nextworks.
it

http://www.efpf.org/
mailto:luigi.giugliano@linksfoundation.com
mailto:luigi.giugliano@linksfoundation.com
mailto:luigi.giugliano@linksfoundation.com
mailto:luigi.giugliano@linksfoundation.com
https://www.composition-project.eu/wp-content/downloads/D5.3_Continuous_Deep_Learning_Toolkit_for_Real_Time_Adaptation_I.pdf
mailto:jure.rosso@linksfoundation.com
mailto:jure.rosso@linksfoundation.com
mailto:jure.rosso@linksfoundation.com
mailto:jure.rosso@linksfoundation.com
mailto:mathias.axling@cnet.se
mailto:mathias.axling@cnet.se
mailto:mathias.axling@cnet.se
https://code.linksmart.eu/projects/LA
mailto:alnizami@iti.gr
mailto:alnizami@iti.gr
https://www.sciencedirect.com/science/article/pii/S2405896318314472
mailto:alnizami@iti.gr
mailto:alnizami@iti.gr
https://www.composition-project.eu/wp-content/uploads/2019/01/D3.5_Computational_Modelling_Simulation_and_Prediction_of_Production_II.pdf
mailto:farshid.tavakolizadeh@fit.fraunhofer.de
mailto:farshid.tavakolizadeh@fit.fraunhofer.de
mailto:farshid.tavakolizadeh@fit.fraunhofer.de
mailto:farshid.tavakolizadeh@fit.fraunhofer.de
https://docs.linksmart.eu/display/SC
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 99 / 96

AMQP/MQTT
broker

Symphony Event

reactor

Event reactor and logic engine, with graphical

UI

TRL 9 REST, CORBA, raw, AMQP, MQTT |

proprietary (oneM2M/SAREF-based)
| proprietary | proprietary (OAuth) |
Proprietary

Symphony base

infrastructure +
HAL

C++, Python Binary

(Docker
image coming
soon)

NXW m.pardi@

nextworks.
it

Symphony Visualizatio
n app

Customizable app to interact with the system
(iOS, Android, web)

TRL 9 REST, gRPC, raw | - | binary |
proprietary | proprietary

Symphony base
infrastructure

ObjC, Java,
Java/GWT

Binary NXW m.pardi@
nextworks.
it

vf-OS Marketplace Multi-sided Marketplace for consumers and
providers

TRL7 HTTP | JSON | JSON | Binaries |
Basic Authentication |None

Ascora FIPS PHP Docker Image ASC hinz@asc
ora.de

link

vf-OS Frontend

Environmen
t

Frontend Editor TRL5 HTTP | JSON | JSON | Binaries |

Basic Authentication |None

None NodeJS,

Express

Docker Image ASC klasen@a

scora.de

link

NIMBLE Platform
Frontend

The endpoint where we can reach each
platform as users

TRL4 HTTP | JSON | UBL | OAUTH |
Keycloak

Java, JavaScript Docker Image SRFG

link

NIMBLE Identity

Service

Identity service TRL4 HTTP | JSON | UBL | OAUTH |

Keycloak

Java, Spring

Boot

Docker Image SRFG

link

NIMBLE Catalogue
Service

Management / service catalogues TRL5 HTTP | JSON | UBL | OAUTH |
Keycloak

NIMBLE scope
modules

Java, Spring
Boot

Docker Image SRDC suat@srdc
.com.tr

link

NIMBLE Business
Process
Service

Manages B2B collaboration TRL5 HTTP | JSON | UBL | OAUTH |
Keycloak

NIMBLE scope
modules

Java, Spring
Boot

Docker Image SRDC suat@srdc
.com.tr

link

NIMBLE Data
Channel

Service

Channels for enabling the exchange of
sensor data

HTTP | JSON | UBL | OAUTH |
Keycloak

Docker Image SRFG

link

Valuechain iQluster Supply chain visualisation and intelligence
generation

TRL 7 HTTP|JSON none .Net

DIGICOR Process
engine

Design and execution of processes TRL 4 HTTP | JSON | BPMN2.0 | a version
w/ keycloak exists |

None Java, Spring,
Liferay

Docker Image ICE cesar.mari
n@inform
ationcataly

st.com

DIGICOR Dynamic
Factory

Connectivity
Service

Assists in connecting local site (factory floor)
data to information requests by cloud tools

monitoring collaborative manufacturing
projects. Consists of a cloud service and
edge nodes connected over a firewall friendly

channel.

TRL 4 OPC UA Client-Server Binary, OPC
UA PubSub over AMQP, AMQP 1.0,

Eventuate REST/STOMP | JSON |
Proprietary (DIGICOR Production
Data Model), OPC UA

AMQP 1.0 Broker
/ Eventuate (cloud

service only)

Java &
JavaScript

FOR bnouhann

a@fortiss.

org

DIGICOR Workflow
and service

automation

Design and execution of processes TRL 4 HTTP | JSON | BPMN2.0 | a version
w/ keycloak exists |

None. Standalone
tool

Java, Spring,
Liferay

Docker Image ICE cesar.mari
n@inform

ationcataly
st.com

link

DIGICOR TDMS Tender decomposition and matchmaking
service

TRL 5 HTTP | JSON None Java, R Docker Image Uni
Manche
ster

n.mehandj
iev@manc

http://www.efpf.org/
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:m.pardi@nextworks.it
mailto:hinz@ascora.de
mailto:hinz@ascora.de
https://vfos-docs.ascora.eu/#marketplace
mailto:klasen@ascora.de
mailto:klasen@ascora.de
https://vfos-docs.ascora.eu/#frontend-environment
https://nimble-platform.salzburgresearch.at/nimble/frontend
https://nimble-platform.salzburgresearch.at/nimble/identity/swagger-ui.html
mailto:suat@srdc.com.tr
mailto:suat@srdc.com.tr
https://nimble-platform.salzburgresearch.at/nimble/catalog/swagger-ui.html
mailto:suat@srdc.com.tr
mailto:suat@srdc.com.tr
https://nimble-platform.salzburgresearch.at/nimble/business-process/swagger-ui.html
https://nimble-platform.salzburgresearch.at/nimble/data-channel/swagger-ui.html
mailto:cesar.marin@informationcatalyst.com
mailto:cesar.marin@informationcatalyst.com
mailto:cesar.marin@informationcatalyst.com
mailto:cesar.marin@informationcatalyst.com
mailto:bnouhanna@fortiss.org
mailto:bnouhanna@fortiss.org
mailto:bnouhanna@fortiss.org
mailto:cesar.marin@informationcatalyst.com
mailto:cesar.marin@informationcatalyst.com
mailto:cesar.marin@informationcatalyst.com
mailto:cesar.marin@informationcatalyst.com
https://drive.google.com/open?id=18T6fHtb1ZmM8uvM9tJbcIUHH4_Fayph4
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 100 / 96

hester.ac.
uk

DIGICOR DigiGov Creating and monitoring governance for

supply chain collaborations

TRL 3 HTTP | JSON TDMS Java Docker Image Uni

Manche
ster

n.mehandj

iev@manc
hester.ac.
uk

DIGICOR Opera Generating workflows for collaborative tender
preparation

TRL 1 HTTP | JSON | BPMN TDMS, DigiGov Java Docker Image Uni
Manche
ster

n.mehandj
iev@manc
hester.ac.

uk

SMECluster Industreweb
Collect

Factory
Connector

Manufacturing Data Collection and
Orchestration Gateway

TRL9 OPC ClientServer | OPC DA | OPC
DA

OPC UA ClientServer | OPC UA
binary or XML | Proprietary
OPC UA PubSub | JSON |

Proprietary
SignalR Websockets | Websocket,
JSON Payload

AMQP/MQTT | JSON | Proprietary |
Basic MQTT authentication

Manufacturing
control systems

(PLC, Robot,
CNC…)

C#.Net,
configuration by

proprietary logic
rule language

Physical
deployment at

machine level
(edge
computing)

C2K sosborne
@control2

k.co.uk

SMECluster Flexeweb

Commerce

Enterprise E-Commerce Engine TRL9 REST Web Api | JSON | Proprietary

C#.Net, XAML

Workflow design

Integrated

package
installer

C2K sosborne

@control2
k.co.uk

link

SMECluster SMECluster
eWebCore
API

Services

Service library for collaboration Services
within SMECluster

TRL8 REST Web Api | JSON | Proprietary

C2K sosborne
@control2
k.co.uk

http://www.efpf.org/
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:n.mehandjiev@manchester.ac.uk
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk
http://www.flexeweb.com/downloads/FlexewebCommerce.pdf
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk
mailto:sosborne@control2k.co.uk

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 101 / 96

Annex D: Survey of Platforms for Realising Data Spine

Platform License Language
Plugin/Extension
Mechanism

Supported Language
s for Plugins

Hot Plugin
Deployment

REST/API
Management

Reverse Proxy
Support

Identity and Access
Management

Type
Message
Bus

Relation to Data
Spine
conceptual

component

Apache

NiFi

Apache

License,
Version
2.0

Java

Yes. Points of

extension: Process
ors, Controller
Services, Reporting

Tasks, Prioritizers,
and Customer Uis

Java. Scripted
Processors (Clojure,
ECMA Script, lua,

Groovy, Python,
Ruby)

No. Putting

'plugin' to the
NiFi lib
directory

and restarting
NiFi is
required.

To manage

NiFi
instance: RES
T API

Yes, using

reverse proxy
server such
as Nginx

Authentication: client

certificates (Kerberos),
username/password
(LDAP), Apache Knox ,

OpenId Connect
Authorization: Multi-
Tenant Authorization

Data-flow

management / data
logistics tool based
on the concepts of

flow-based
programming

NiFi

is compleme
ntary to
Messaging

Queues
such as
Kafka

NiFi Platform:

Integration Flow
Engine
Processors:

Service Plugin
Adapters

WSO2
Integrati
on Agile

Platform

Apache
License,
Version

2 and
commer
cial

licenses

Java Yes Java

No.

To manage
APIs of
integrated

services: WSO
2 API
Manager

Yes,
using WSO2 API
Manager

WSO2 Identity Server Integration Agile
Platform to
develop, reuse, run

and manage
integrations

WSO2
Message
Broker

WSO2 Enterprise
Integrator:
Integration Flow

Engine
WSO2
ESB and WSO2

Message Broker:
Message Bus

FIWARE GNU
Affero
General

Public
License
v3.0 and

other

Broker:
C++; IoT
agents:

NGSI
protocol

Yes, in the form of
IoT agents

- - NGSI protocol
to interact with
Orion Context

Broker

No built-in
reverse proxy
mechanism

FIWARE
Keyrock: OAuth2-
based authentication

and authorization
security

IoT platform
- Microservices
architecture, with

message broker in
center, and IoT
agents interacting

with broker
through NGSI prot
ocol

The Orion
Context
Broker is the

central
message
broker for all

messages

Orion Context
Broker:
Integration Flow

Engine
IoT agent:
Service Plugin

Adapter
FIWARE Keyrock:
Security & Identity

Management

Sympho
ny BMS

Sympho
ny BMS

Commerci
al

C++ / Python / Go Yes, Points of
extension: field-bus

drivers, output data
formats, data storage
backends,

customization of UIs

C++ / Python /
Go

No Yes (not
available for all

modules)

Yes Fully fledged
standalone

automation
platform

COBRA -

http://www.efpf.org/
https://github.com/apache/nifi/blob/master/nifi-docs/LICENSE
https://github.com/apache/nifi/blob/master/nifi-docs/LICENSE
https://github.com/apache/nifi/blob/master/nifi-docs/LICENSE
https://github.com/apache/nifi/blob/master/nifi-docs/LICENSE
https://github.com/apache/nifi
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://wso2.com/platform
https://wso2.com/platform
https://wso2.com/platform
https://wso2.com/platform
https://wso2.com/licenses
https://wso2.com/licenses
https://wso2.com/licenses
https://wso2.com/licenses
https://wso2.com/licenses
https://wso2.com/licenses
https://wso2.com/licenses
https://docs.wso2.com/display/ESB500/Creating+Custom+Mediators
https://docs.wso2.com/display/ESB500/Writing+a+WSO2+ESB+Mediator
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/api-management/
https://wso2.com/identity-and-access-management/
https://wso2.com/products/enterprise-service-bus/
https://wso2.com/products/enterprise-service-bus/
https://wso2.com/products/enterprise-service-bus/
https://wso2.com/integration/
https://wso2.com/integration/
https://wso2.com/integration/
https://wso2.com/integration/
https://wso2.com/integration/
https://wso2.com/integration/
https://wso2.com/integration/
https://wso2.com/integration/
https://fiware-tutorials.readthedocs.io/en/latest/identity-management/index.html
https://fiware-tutorials.readthedocs.io/en/latest/identity-management/index.html
https://fiware-tutorials.readthedocs.io/en/latest/identity-management/index.html
https://fiware-tutorials.readthedocs.io/en/latest/identity-management/index.html
https://fiware-tutorials.readthedocs.io/en/latest/identity-management/index.html

European Connected Factory Platform for Agile Manufacturing – http://www.efpf.org

D3.1: EFPF Architecture-I - Vs: 1.0 - Public 102 / 96

Apache
Camel

Apache
License,
Version

2.0

Java

Yes. Supports

custom processors
[c1, c2]

Java Yes For interacting
with the Camel
context, the

available
endpoints and
routes: REST

API

Yes

Route Security, Shiro
Security, Spring

Security, Payload
Security, Endpoint
Security, Configuration

Security

Message-oriented
middleware
that supports

configuration
of routing and
mediation rules to

implement the
various Enterprise
Integration

Patterns [c3]

Camel can
be viewed
as

a Message
Bus itself.,
Camel also

supports
various JMS
providers an

d Message
Brokers suc
h as Kafka.

Camel Platform:
Integration Flow
Engine

Processors:
Service Plugin
Adapters

Talend ESB and
Red Hat Fuse are
both based on

Apache Camel.
Both have
Eclipse-based

development
environment.

LinkSma

rt®
Platform

Apache

License,
Version
2.0

Go, Java,

Javascript

As new

microservices

Any As new

microservices

No separate

component for
managing
APIs

Yes,

in LinkSmart®
Border Gateway

Yes, using OpenID

Connect (OIDC)
provider such as
Keycloak

IoT platform -

microservices for
device abstraction,
security, data

management
(storage &
visualization),

service
provisioning and
online data mining

No message

bus

Service Catalog:

Service Registry,
Border Gateway:
API Security

Gateway

Apache
Flink

Apache
License,

Version
2.0

Java and
Scala

- - - - - - Stream processing
framework (and

also a batch
processing
framework)

- Flink as an option
for Data

Transformations
in Integration
Flow Engine

Confluen
t
Platform

Apache
License,
Version

2.0, &
commer
cial

- - - - - Confluent REST
Proxy

- Event streaming
platform

- -

http://www.efpf.org/
https://github.com/apache/camel/blob/master/LICENSE.txt
https://github.com/apache/camel/blob/master/LICENSE.txt
https://github.com/apache/camel/blob/master/LICENSE.txt
https://github.com/apache/camel/blob/master/LICENSE.txt
http://camel.apache.org/
http://camel.apache.org/processor.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/processor.html
http://camel.apache.org/web-console.html
http://camel.apache.org/web-console.html
http://camel.apache.org/web-console.html
http://camel.apache.org/web-console.html
http://camel.apache.org/web-console.html
http://camel.apache.org/web-console.html
http://camel.apache.org/web-console.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/security.html
http://camel.apache.org/security.html
http://camel.apache.org/security.html
http://camel.apache.org/security.html
http://camel.apache.org/security.html
http://camel.apache.org/security.html
http://camel.apache.org/architecture.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
https://docs.linksmart.eu/
https://docs.linksmart.eu/
https://docs.linksmart.eu/
https://github.com/apache/flink/blob/master/LICENSE
https://github.com/apache/flink/blob/master/LICENSE
https://github.com/apache/flink/blob/master/LICENSE
https://github.com/apache/flink/blob/master/LICENSE
https://github.com/apache/flink
https://github.com/apache/flink
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://www.confluent.io/confluent-community-license-faq
https://www.confluent.io/confluent-community-license-faq
https://www.confluent.io/confluent-community-license-faq
https://www.confluent.io/confluent-community-license-faq
https://docs.confluent.io/current/kafka-rest/docs/index.html?_ga=2.24217210.1307027248.1553668944-375466235.1553668944
https://docs.confluent.io/current/kafka-rest/docs/index.html?_ga=2.24217210.1307027248.1553668944-375466235.1553668944

www.efpf.org

