
 

 

 

EFPF: European Connected Factory Platform for 
Agile Manufacturing 

 
 

WP3: EFPF Architecture 

D3.2: EFPF Data Spine Realisation - I  
Vs: 1.0 

 

Deliverable Lead and Editor: Rohit Deshmukh, Fraunhofer FIT 

Contributing Partners: FIT, LINKS, SRFG, CNET, C2K, ICE, ASC, VLC, AID, ALM, 
FOR, NXW, CERTH, SRDC, CMS  

Date: 2020-06  

Dissemination: Public 

Status: <Draft ¦ Consortium Approved ¦ EU Approved> 

  

Grant Agreement: 
825075 

Short Abstract 

This deliverable presents an update to the architecture of EFPF 
ecosystem since D3.1: Design and Realisation of Interoperable Data 
Spine. The deliverable details the components of Data Spine and 
specifies how heterogeneous services can be integrated through the 
Data Spine to enable communication in the EFPF ecosystem. 



 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public II / VI 

 

Document Status 

Deliverable Lead 
 

Rohit Deshmukh, Fraunhofer FIT 

Internal 
Reviewer 1 
 

Edoardo Pristeri, LINKS 

Internal 
Reviewer 2 
 

Nisrine Bnouhanna, FOR 

Type 
 

Deliverable 

Work Package  
 

WP3: EFPF Architecture 

ID  
 

D3.2: EFPF Data Spine Realisation - I 

Due Date 
 

2020-06-30 

Delivery Date 
 

2020-06-30 

Status 
 

<Draft ¦ Consortium Approved ¦ EU Approved> 

 

History 

See Annex B. 

Status 

This deliverable is subject to final acceptance by the European Commission. 

Further Information 

www.efpf.org  

Disclaimer 

The views represented in this document only reflect the views of the authors and not the 
views of the European Union. The European Union is not liable for any use that may be 
made of the information contained in this document. 

Furthermore, the information is provided “as is” and no guarantee or warranty is given that 
the information is fit for any particular purpose. The user of the information uses it at its sole 
risk and liability. 

 

http://www.efpf.org/
http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public III / VI 

Project Partners: 

   

 
  

   

  

 

   

   

 
  

   
 

 

  

 

 
 

 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public IV / VI 

Executive Summary 

This deliverable presents the current state of the design and realisation of Data Spine, the 
integration and interoperability layer that enables communication in the EFPF ecosystem, 
and explains how services can be integrated through the Data Spine.  

This deliverable reports on the progress being made in the following tasks in the EFPF 
project, solely because all of these tasks perform highly interrelated activities that contribute 
towards the establishment of the EFPF federation through the realisation of an open 
interoperability mechanism i.e. the Data Spine.  

T3.1: EFPF Architecture-II 

T3.2: Design and Realisation of Interoperable Data Spine-I 

T3.4: Interfaces for Tools, Systems and Platforms-I 

T3.5: Data Model Interoperability Layer-I   

In this respect, the deliverable presents an update to the architecture of the EFPF ecosystem 
from the baseline architecture presented in D3.1. Based on the refinements in the 
architecture, the deliverable describes the interfaces for tools, services, systems and 
platforms in the EFPF ecosystem and the data model interoperability layer that aligns the 
data models of different tools and platforms and specifies how data transformation can be 
performed to facilitate the interplay and interconnectivity between distributed technologies. 

The architecture of the EFPF Data Spine and Platform has been designed with modularity 
and extensibility in mind to meet the need for incorporating new tools in the EFPF platform 
and external platforms in the EFPF ecosystem, with minimum effort, and also the needs of 
users and experimenters. 

One important objective of this deliverable is to provide necessary information to the EFPF 
project participants as well as external entities who might be interested in interlinking their 
tools/services through the Data Spine and making them part of the EFPF ecosystem. To 
enable this, the deliverable highlights the steps a service provider needs to perform in order 
to provide his/her service through the Data Spine and the steps a service consumer needs 
to perform to consume services that are offered through the Data Spine. 

The abstract architecture and realisation of the Data Spine presented in this deliverable will 
be subsequently developed and enhanced as the project progresses and the updated 
architectural specification and implementation details will be included in the next version of 
this deliverable D3.3 at M42 of the EFPF project. The updates to the interfaces for tools, 
services, systems and platforms and the data model interoperability layer will also be 
included in that deliverable. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public V / VI 

Table of Contents  

 

0 Introduction .................................................................................................................... 1 
 EFPF Project Overview ......................................................................................... 1 
 Deliverable Purpose and Scope ............................................................................ 1 

 Target Audience .................................................................................................... 2 
 Deliverable Context ............................................................................................... 2 
 Document Structure ............................................................................................... 2 
 Document Status  .................................................................................................. 3 
 Document Dependencies  ..................................................................................... 3 

 Glossary and Abbreviations ................................................................................... 3 
 External Annexes and Supporting Documents ...................................................... 3 

 Reading Notes ....................................................................................................... 3 

1 EFPF Architecture Update ............................................................................................. 4 
 EFPF Architecture Context View ........................................................................... 4 
 EFPF Architecture Functional View ....................................................................... 6 

1.2.1 Overview of Data Spine ............................................................................. 6 

1.2.2 Overview of EFPF Platform ....................................................................... 7 
 EFPF Architecture Information View .................................................................... 37 

1.3.1 High-level Dataflow in the EFPF Ecosystem ........................................... 38 
1.3.2 Synchronous Dataflow in the EFPF Ecosystem ...................................... 38 
1.3.3 Asynchronous Dataflow in the EFPF Ecosystem ..................................... 39 

 EFPF Architecture Development and Deployment View ..................................... 40 
1.4.1 Deployment Process................................................................................ 40 

1.4.2 Environments ........................................................................................... 42 
2 Design and Realisation of Interoperable Data Spine ................................................... 44 

 Design of Interoperable Data Spine ..................................................................... 44 

2.1.1 Integration Flow Engine ........................................................................... 45 

2.1.2 API Security Gateway .............................................................................. 47 
2.1.3 Service Registry ...................................................................................... 47 

2.1.4 Message Bus ........................................................................................... 49 
2.1.5 EFPF Security Portal ............................................................................... 50 
2.1.6 The Data Spine ........................................................................................ 52 

 Realisation of Interoperable Data Spine .............................................................. 53 
2.2.1 Integration Flow Engine ........................................................................... 54 

2.2.2 API Security Gateway .............................................................................. 66 
2.2.3 Service Registry ...................................................................................... 68 
2.2.4 Message Bus ........................................................................................... 77 
2.2.5 EFPF Security Portal ............................................................................... 83 
2.2.6 The Data Spine ........................................................................................ 86 

 Service Integration through Data Spine ............................................................... 87 
 Dataflow through Data Spine ............................................................................... 89 

3 Interfaces for Tools, Systems and Platforms ............................................................... 92 
 Introduction .......................................................................................................... 92 
 APIs for Tools, Systems and Platforms ............................................................... 92 

3.2.1 EFPF Platform ......................................................................................... 92 
3.2.2 Base Platforms ...................................................................................... 110 

 API Management ............................................................................................... 119 
 Interface Contracts and Their Management ...................................................... 120 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public VI / VI 

3.4.1 Introduction ............................................................................................ 120 

3.4.2 Interface Contracts Management Tool................................................... 120 

4 Data Model Interoperability Layer .............................................................................. 122 
 Introduction ........................................................................................................ 122 

4.1.1 Methodology for the Data Model Interoperability ................................... 122 
4.1.2 Reference Models ................................................................................. 124 

 Pilot Scenarios Analysis .................................................................................... 127 

4.2.1 Working Environment Monitoring ........................................................... 127 
4.2.2 Bins’ Fill Level Monitoring ...................................................................... 128 
4.2.3 Production Optimisation Pilot ................................................................. 130 
4.2.4 Tendering and Bid Management ........................................................... 131 
4.2.5 Supply Chain Transparency (WASP)..................................................... 131 

4.2.6 Blockchain and Smart Contracting ........................................................ 133 
4.2.7 Matchmaking ......................................................................................... 133 
4.2.8 Conclusions from Pilot Scenario Analysis .............................................. 134 

 Data Model Interoperability Tools ...................................................................... 135 
4.3.1 JOLT ...................................................................................................... 135 
4.3.2 XSL Transformations (XSLT) ................................................................. 136 

4.3.3 ExecuteScript ........................................................................................ 137 
4.3.4 Ad-Hoc Microservices ............................................................................ 138 
4.3.5 Summary and Future Work .................................................................... 138 

 Future Work on Data Model Interoperbility ........................................................ 139 
5 Conclusion and Outlook ............................................................................................. 140 

Annex A: History .............................................................................................................. 141 
Annex B: References ....................................................................................................... 143 
Annex C: API Specifications ............................................................................................ 145 

 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 1 / 191 

0 Introduction 

 EFPF Project Overview 

EFPF – European Connected Factory Platform for Agile Manufacturing – is a project funded 
by the H2020 Framework Programme of the European Commission under Grant Agreement 
825075 and conducted from January 2019 until December 2022. It engages 30 partners 
(Users, Technology Providers, Consultants and Research Institutes) from 11 countries with 
a total budget of circa 16M€. Further information: www.efpf.org 

In order to foster the growth of a pan-European platform ecosystem that enables the 
transition from “analogue-first” mass production, to “digital twins” and lot-size-one 
manufacturing, the EFPF project will design, build and operate a federated digital 
manufacturing platform. The Platform will be bootstrapped by interlinking the four base 
platforms from FoF-11-2016 cluster funded by the European Commission, early on. This will 
set the foundation for the development of EFPF Data Spine and the associated toolsets to 
fully connect the existing platforms, toolsets and user communities of the 4 base platforms. 
The federated EFPF platform will also be offered to new users through a unified Portal with 
value-added features such as single sign-on (SSO), user access management 
functionalities to hide the complexity of dealing with different platform and solution providers. 

 Deliverable Purpose and Scope 

The purpose of this document, “D3.2: EFPF Data Spine Realisation - I”, is to present four 
different aspects of the EFPF ecosystem: the architecture, the design and realisation of 
Interoperable Data Spine, the interfaces for tools, systems and platforms of the ecosystem 
and the data model interoperability layer in the form of four dedicated sections. First, an 
overview of the architecture of the EFPF ecosystem with focus on updates from the baseline 
architecture that was presented in the previous architecture deliverable D3.1. Second, the 
detailed design of the Data Spine, its conceptual components and their relationships and 
interactions with each other, the overview, architecture, interfaces, configuration and 
operation of the technologies selected to realise these conceptual components of the Data 
Spine, integration of service through the Data Spine i.e. the steps that a service provider 
needs to perform in order to provide his/her service through the Data Spine and the steps a 
service consumer needs to perform to consume services through the Data Spine. Third, the 
interfaces for tools, services, systems and platform which are the building blocks of the EFPF 
ecosystem, the management of their APIs and APIs contracts between them. Fourth and 
finally, the data model interoperability layer that aligns the data models of the federated 
platforms to support meaningful message exchange and viable business processes that 
spread across two or more of the existing EFPF platforms. 

The scope of this deliverable includes the updates to architectures of the tools, services, 
systems and platforms in the EFPF ecosystem and their APIs and not their detailed 
description and information related to their configuration, operation, etc. The scope of this 
deliverable also includes all aspects related to the design and realisation of the Data Spine 
and the data model interoperability layer. 

http://www.efpf.org/
http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 2 / 191 

 Target Audience 

This document aims primarily at project participants and external entities that are interested 
in interlinking their tools/services through the Data Spine and making them part of the EFPF 
ecosystem. In addition, this deliverable provides the European Commission (including 
appointed Independent experts) with an overview of the underlying architecture of the EFPF 
platform and the Data Spine. 

 Deliverable Context 

This document is one of the cornerstones for achieving the project results. Its relationship 
to other documents is as follows: 

• D2.1: Project Vision and Roadmap for Realising Integrated EFPF Platform: 
Provides an overview of the EFPF project and platform 

• D2.3: Requirements of Embedded Pilot Scenarios: Provide an overview of the pilot 
requirements on the federated EFPF platform 

• D3.1: EFPF Architecture-I: Presents the baseline architecture of the EFPF ecosystem 
with focus on the EFPF platform and the Data Spine 

• D4.1: Smart Factory Solutions in the EFPF Ecosystem - I: Provides a report of the 
Tools and Services available within the EFPF Ecosystem that can be used to provide 
Smart Factory solutions 

• D5.1: EFPF Matchmaking and Intelligence Gathering: Presents an account of 
developments achieved under Matchmaking and Intelligence gathering tasks in EFPF 
project 

• D5.2: EFPF Security and Governance: Provides details about the Governance Rules 
and Trust Mechanisms, Holistic Security, Privacy and User Management Framework in 
EFPF 

• D5.3: EFPF Interfacing, Evolution and Extension: Provides requirements for the 
EFPF Ecosystem, its evolution and extension and includes detailed information about 
the EFPF Marketplace and Portal 

• D6.1: EFPF Integration and Deployment - I: Presents the development and 
deployment architecture of the EFPF ecosystem with focus on the EFPF platform and 
the Data Spine 

 Document Structure 

This deliverable is broken down into the following sections: 
 

• Section 1: EFPF Architecture Update: Presents an overview of the architecture of the 
EFPF ecosystem with focus on updates from the baseline architecture that was 
presented in the previous architecture deliverable D3.1; 

• Section 2: Design and Realisation of Interoperable Data Spine: Presents the design 
and realisation of Data Spine - the interoperability backbone of EFPF;  

• Section 3: Interfaces for Tools, Systems and Platforms: Describes the interfaces for 
tools, systems and platforms - the building blocks of the EFPF ecosystem; 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 3 / 191 

• Section 4: Data Model Interoperability Layer: Describes the data model 
interoperability layer that aligns the data models of the federated platforms; 

• Section 5: Conclusion and Outlook: Concludes the deliverable and mentions the 
future work. 

• Annexes: 
 

• Annex A: History 

• Annex B: References  

• Annex C: API Specifications 

 Document Status  

This document is listed in the Description of Action (DoA) as “public”. 

 Document Dependencies  

This document is the second of the two deliverables that describe the architecture of the 
EFPF ecosystem. The first deliverable submitted at Month 9 of the EFPF project described 
the baseline architecture of the EFPF ecosystem and its components. This second and final 
architecture deliverable at Month 18 provides the final architecture. 

This document is also the first of the two deliverables that describe the design and realisation 
of the Data Spine, the interfaces for tools, systems and platforms, and the data model 
interoperability layer. This first deliverable at Month 18 of the EFPF project describes the 
above-mentioned aspects of the EFPF ecosystem. The second and final deliverable at 
Month 42 provides the final report. 

 Glossary and Abbreviations 

A definition of common terms related to EFPF, as well as a list of abbreviations, is 
available in the supplementary and separate document “EFPF Glossary and 
Abbreviations”. 

Further information can be found at www.efpf.org 

 External Annexes and Supporting Documents 

Annexes and Supporting Documents: 
 

• None 

 Reading Notes 

• None 

http://www.efpf.org/
http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 4 / 191 

1 EFPF Architecture Update 

This section provides an update to the architecture of the EFPF platform, the Data Spine 
and the EFPF federated ecosystem from the baseline architecture presented in the previous 
deliverable D3.1. In order to preserve the context and ensure readability, some sections and 
information from D3.1 is also included in this section. 

 EFPF Architecture Context View 

Figure 1 presents an overview of the high-level architecture of the EFPF platform, the Data 
Spine and the EFPF federated ecosystem of base and external platforms. In contrast to the 
high-level architecture diagrams shown in the DoA, the architecture in Figure 1 further 
details the composition and role of Data Spine in the EFPF ecosystem and its relationship 
and interaction with other components. 

 

Figure 1: High-level Architecture of the EFPF Ecosystem 

The EFPF platform follows the micro-service architecture approach in which different 
functional modules implement individual functionalities that can be composed based on 
specific user needs. In order to implement this approach, all components in the EFPF 
ecosystem are prescribed to implement and publish open interfaces, preferably REST 
interfaces, allowing the exchange of data and avoiding the lag-time introduced by 
interconnection buses.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 5 / 191 

The EFPF ecosystem is based on a federation model, which consists of distributed 
platforms, tools and components provided by several partners. These individual 
components communicate through a central entity called ‘Data Spine’. Thus, the EFPF 
ecosystem as a whole follows Service-oriented architecture (SOA) style. The main elements 
in the EFPF federation are: 

• Data Spine: This is the central entity or gluing mechanism in the EFPF federation. The 
Data Spine provides the interoperability infrastructure that initially interlinks and 
establishes interoperability between the four base platforms: COMPOSITION, 
DIGICOR, NIMBLE and vf-OS (see D3.1 for more details). It adheres to common 
industry standards and follows a modular approach to enable the creation of a modular, 
flexible and extensible platform. Therefore, it can be easily extended beyond 
interconnecting the base platforms to ‘plug’ new external platforms in and interlink them 
with the existing platforms. Figure 1 also highlights the platform agnostic nature of the 
Data Spine i.e. it is evident from the high-level architecture that as far as interactions 
with the Data Spine are concerned, there is no distinction between the EFPF platform 
and the base platforms or any other platforms (external and third party). Thus, the Data 
Spine would be independent from the rest of the EFPF platform. This hypothetically 
means that even if the EFPF platform were ‘switched-off’ in the future, the Data Spine 
would not be affected and therefore would continue to support an interconnected 
ecosystem. 

• EFPF Platform: This is a digital platform that provides unified access to dispersed 
(IoT, digital manufacturing, data analytics, blockchain, distributed workflow, business 
intelligence, matchmaking, etc.) tools and services through a Web-based portal. The 
tools and services brought together in the EFPF platform are the market ready or 
reference implementations of the Smart Factory and Industry 4.0 tools from project 
partners. The collection of enhanced versions of such tools and services from the base 
or external platforms deployed together as micro-services would constitute the EFPF 
platform. These micro-services are made accessible through the EFPF Portal using 
the Single Sign-On (SSO) functionality offered by the EFPF ecosystem 

• Base Platforms: The four base platforms (COMPOSITION, DIGICOR, NIMBLE and 
vf-OS) in EFPF are funded by the European Commission's Horizon 2020 program 
within the Collaborative Manufacturing and Logistic Cluster (FoF-11-2016). These 
base platforms are interlinked through the Data Spine, which offers seamless 
interoperability of distributed tools and services by integrating, aligning and enhancing 
the open APIs of the existing platforms 

• External Platforms: In addition to the four base platforms, the EFPF ecosystem 
enables interlinking of other platforms and open-source tools that address the specific 
needs of connected smart factories. The external platforms that joined the EFPF 
ecosystem at the beginning of the project are: ValueChain’s iQluster platform1 and 
SMECluster’s Industreweb platform2 

• Pilots and Experiments: These are the components and systems that will interact 
with the EFPF ecosystem (including the EFPF platform and the Data Spine) during the 
course of the project 

 

 
1 https://valuechain.com/supply-chain-intelligence/iqluster 
2 https://www.industreweb.co.uk/ 

http://www.efpf.org/
https://valuechain.com/supply-chain-intelligence/iqluster
https://www.industreweb.co.uk/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 6 / 191 

 EFPF Architecture Functional View 

The EFPF ecosystem consists of two major components: The Data Spine and the EFPF 
platform, as illustrated in Figure 1. This section provides an architectural overview of these 
components and their subcomponents, responsibilities, and interactions with other (sub) 
components. The detailed description of the Data Spine can be found in Section 2 and the 
detailed description of the components of the EFPF platform can be found in the deliverables 
D4.1, D5.1, D5.2 and D5.3. 

1.2.1 Overview of Data Spine 

Data Spine is the interoperability backbone of the EFPF ecosystem that interlinks and 
establishes interoperability between the services of different platforms. The Data Spine is 
aimed at bridging the interoperability gaps between services at three different levels: 

• Protocol interoperability: The Data Spine supports two communication patterns: 
1. Synchronous request-response pattern  
2. Asynchronous publish-subscribe pattern 
While the Data Spine supports standard protocols that are widely used in the industry, 
it employs an easily extensible mechanism for adding support for new protocols 

• Data Model interoperability: The Data Spine provides a platform and mechanisms to 
transform between the message formats, data structures and data models of different 
services thereby bridging the syntactic and semantic gaps for data transfer 

• Security interoperability: The EFPF Security Portal (EFS) component of the Data 
Spine facilitates the federated security and SSO capability for the EFPF ecosystem  

Figure 2 depicts the architecture of the Data Spine showing a high-level conceptual view of 
the following core components that provide the expected functionality of the Data Spine:  

• The Integration Flow Engine component of the Data Spine provides a platform to the 
system integrators, allowing them to create integration flows for interconnecting the 
different APIs and services. 

• The Service Registry component allows the service providers to register their 
services in the Data Spine. The Service Registry provides a facility for the service 
consumers or system integrators to discover these services and retrieve their metadata 
information required to create the integration flows.  

• The Message Bus component can be used for mediating the transfer of messages or 
data between asynchronous services communicating through the Data Spine. 

• The EFS component of the Data Spine is responsible for providing a SSO facility 
across the EFPF ecosystem (see API Security Gateway). In addition, the EFS 
component enables data integrity, security analytics, trust and reputation mechanisms, 
definition of policies and governance enforcement 

• The API Security Gateway component of the Data Spine (and a sub-functionality of 
EFS) acts as the policy enforcement point (PEP) for the Data Spine and the platforms 
communicating through it. It intercepts all the traffic to the Data Spine and invokes the 
security service for authentication and authorization decisions 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 7 / 191 

 

Figure 2: High-level Architecture of the Data Spine 

1.2.2 Overview of EFPF Platform 

The EFPF platform, shown in Figure 3, is a collection of smart tools and services designed 
for the EFPF ecosystem. These tools and services aim to cover the complete lifecycle of 
production and logistic processes that will be validated by the three cross-domain pilot 
scenarios brought forward by the project partners. Examples of the tools include e.g. Factory 
Connectors, IoT Gateways, distributed production planning and scheduling, distributed 
process design, monitoring, decision support, process optimisation, risk management and 
blockchain based trust and message exchange. In future plans (e.g. through open 
experimentation calls), the platform may also integrate services that play a crucial role in 
collaborative processes. Examples include technology services such as cloud storage, high 
performance computing, and value-based services, e.g. training, smart contracts, legal 
advice etc. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 8 / 191 

 

Figure 3: The EFPF Platform 

The EFPF platform aims to integrate market ready or reference implementations of the smart 
factory and Industry 4.0 tools from project partners. Figure 3 illustrates tools and services 
that are broadly categorised into two types: 

• Management Services: These are the EFPF-specific services that provide federated 
or aggregate management capability of the services of different platforms and provide 
a coherent interface to the user, e.g. the Marketplace. 

• Collaboration Services: These are the utility services with a concrete capability for 
realising collaborative processes in IoT, connected factory and automation 
environments, e.g. the Data Analytics services. 

These tools and services of the EFPF platform are described in brief in the following sub-
sections: 

 Portal 

The EFPF Portal component is the unification point of distributed tools and platforms in the 
EFPF ecosystem. It allows the user to access connected tools, base platforms, 
marketplaces, experiments and pilots through a unified interface. The EFPF Portal is 
accessible at: https://efpf-portal.ascora.eu/. 

http://www.efpf.org/
https://efpf-portal.ascora.eu/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 9 / 191 

 

Figure 4: Snapshot of EFPF Portal Dashboard 

After a login with valid credentials, the user will be forwarded to the portal dashboard (See 
Figure 4), which provides an overview of the value propositions of the EFPF platform. The 
dashboard design enables new users an easy start by selecting topics which are of interest. 
Each section provides additional information about a value proposition and existing 
solutions. 

The portal consists of two parts: The GUI as shown in Figure 4 and a backend component, 
whose UML diagram can be seen in Figure 5. The backend component is providing 
communication to other EFPF platform components and services for logging events, user 
management and other required features. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 10 / 191 

 

Figure 5: UML Component Diagram of EFPF Portal 

 Marketplace 

The Internal Marketplace Framework provides access to items listed on marketplaces at 
different platforms provided by the EFPF partners. Additionally, its accountancy Service 
subcomponent provides features to track & trace and credit users of connected 
marketplaces. 

Currently, products from the following external marketplaces are being displayed: 

• NIMBLE 

• SMECluster 

• vf-OS 

• WASP 

Each product will be displayed with its name, its categories, its product image and a link, 
which leads to the detail product page at the external marketplace.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 11 / 191 

 

Figure 6: Snapshot of the EFPF Marketplace 

The marketplace is currently existing as an Angular web component, which can be easily 
integrated in a website by including a JavaScript library and the Marketplace HTML element 
in the desired page. 

Future changes will introduce a backend component, which will manage communication with 
other EFPF components as seen in Figure 7. 

 

Figure 7: UML Component Diagram of Marketplace Framework 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 12 / 191 

 

 Accountancy Service 

 
Figure 8: Accountancy Service Dashboard 

The Accountancy Service is developed as a part of the EFPF Marketplace Framework and 
provides insight into users’ interactions with the EFPF platform, particularly any transactions 
that EFPF users make on different marketplaces, which are linked with the EFPF 
Marketplace Framework.  

Tracking the user behaviour enables businesses to make productive decisions and develop 
effective business strategies. This is an important feature in the digital platform world, which 
is being used to support the long-term sustainability of the EFPF platform, beyond the span 
of the project. The Accountancy Service tracks and traces users’ journey across the EFPF 
ecosystem and collects data about the transactions that EFPF users make on different 
marketplaces. The collected data is then used to carry out a cashback mechanism allows to 
charge a commission or a referral fee from the marketplace where the EFPF user carries 
out a business transaction (Figure 9). Note, the Accountancy Service does not collect 
personal and / or sensitive corporate data, instead the idea is to collect anonymised 
transactional data. In addition, the Accountancy Service contains a dashboard for the 
visualisation of the user behaviour.  

A taxonomy is setup to identify the trackable user actions in which action items are listed in 
‘subject, verb, object’ manner and these actions include users’ basic interactions with the 
EFPF platform such as login, register, inviting other users as well as payments realized on 
external marketplaces if the user has initiated his/her journey from EFPF Marketplace. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 13 / 191 

 

Figure 9: Cashback Process 

The Accountancy Service is developed based on the Elastic Stack (Elasticsearch, Logstash, 
Kibana) with additional custom modules which are described below. The corresponding 
component diagram is illustrated in Figure 10: 

• Elasticsearch: It stores, indexes, provides and manages user logs to be later analysed. 
Since relational databases are not well-suited for managing log data, a NoSQL database 
like Elasticsearch is preferred due to their flexible and schema-free document structures, 
enabling analytics of the log data. 

• Logstash: It gathers user behaviour data from various components of the EFPF 
platform, executes different transformations and filters the content, before sending the 
data to the Elasticsearch component. 

• Kibana: It enables interactive dashboards, filters and advanced data analysis and 
exploration of user logs. 

• Reporting Component: This component creates periodic (i.e. monthly) reports for each 
dashboard at the end of each month in PDF format and sends it as an email. 

• Invoicing Component: It processes all the payment data accumulated within each 
month, sums all the amounts from successful transactions realized on each marketplace, 
calculates a corresponding cashback amount and creates a detailed invoice with the 
information including purchased products, dates of transactions as well as the calculated 
commission for each product. The invoice will then be used to charge marketplaces 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 14 / 191 

 

Figure 10. UML Component Diagram of the Accountancy Service 

 Matchmaking 

In EFPF, several key manufacturing and smart factory tool platforms are interlinked as a 
federation of digital manufacturing platforms. Namely, they are NIMBLE, COMPOSITION, 
DIGICOR (represented by SMECluster) and vf-OS. In EFPF, these platforms offer different 
types of manufacturing and smart factory solutions. With an effective matchmaking strategy 
these platforms can offer their products and services to a wider client audience through a 
unified EFPF portal with value added features. 

The goal of matchmaking in EFPF is to facilitate EFPF users to find the best suited suppliers 
and enable them to transact with them efficiently and effectively. This is achieved through 4 
layers of matchmaking in EFPF platform; 

• Federated search of participants (suppliers/service providers) & their value-units 
(products/services) 

• Platform recommendations of suppliers/service providers & products/services 

• Navigate users to perform negotiations and transactions with selected suppliers and 
service providers from different base platforms  

• Enable users to find the best supplier to fulfil a request for a service or product in a 
fully automated way (via automated agents) 

 
Figure 11 represents the component architecture of matchmaking in EFPF.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 15 / 191 

 
Figure 11: UML Component Diagram of Matchmaking Framework 

The main components of the service can be briefly described as follows: 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 16 / 191 

• Base platform data indexing workflows: The data stores in base platforms 
representing data of products/services and service providers are synced with the 
federated matchmaking index via these workflows. These workflows are deployed in the 
Data Spine’s integration flow engine 

• Federated index: The federated data index for matchmaking services such as federated 
search and recommendation services on EFPF.  

Matchmaking service: The main service providing search & recommendation functionality 
to the EFPF users. This service is integrated in the EFPF portal to provide federated 
search functionality. The Matchmaking API specification can be found here: https://efpf-
security-portal.salzburgresearch.at/api/index/swagger-ui.html 

The architecture of the Matchmaking service in EFPF is further described in D5.1: EFPF 
Matchmaking and Intelligence Gathering.  

Matchmaker for Online Bidding Process 

The matchmaker component is a rule-based matchmaking engine amplified with multi-
criteria algorithms for offers’ evaluation. It supports semantic matching in terms of services, 
products and business entities’ capabilities at the EFPF platform and enables automated 
real time bidding. The Matchmaker’s functionality surpass the concept of search of services 
and products and realize an automated matchmaking process for negotiations and business 
transactions between interested stakeholders. 

Figure 12 depicts the Matchmaking Semantic Framework’s different components in a UML 
diagram. The Matchmaker base is the Ontology store which provide the other components 
with the Ontology information by handing over Ontology models or by receiving SPARQL 
queries. The Agent Level and Offer Level Matchmaking modules implement the core 
functionalities of the framework. They both operate using the Semantic Rules module which 
executes rules and queries and achieve explicit matching between Requesters and 
Suppliers. The Offer Level Matchmaking module additionally uses the Weight Assessment 
module in order to extract the best matching offer according to the request. The Ontology 
Querying module achieves the retrieval of the requested Ontology information. A RESTful 
API is exposed on top of all framework’s modules and accomplishes the external 
communication of Marketplace Agents with the Matchmaker API. 

http://www.efpf.org/
https://efpf-security-portal.salzburgresearch.at/api/index/swagger-ui.html
https://efpf-security-portal.salzburgresearch.at/api/index/swagger-ui.html


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 17 / 191 

 

Figure 12: Matchmaker API UML Component Diagram 

 Governance & Trust 

The EFPF is an emerging ecosystem of multi-sided digital platforms. This platform 
ecosystem requires effective governance mechanisms to be put in place, to reach its major 
goals and create sustainable outcomes. The governance mechanisms for digital platform 
ecosystems need to reflect on the lawful interactions of key stakeholders, be they owners of 
the platforms, companies using the platform, or developers, users, advertisers, economists, 
computer scientists, governments or regulators. The interests and legal roles require a 
balanced interplay and understanding of interdependencies between all stakeholders, 
collaborating in such an ecosystem. In other words, to stimulate positive interaction payoffs 
within the platform ecosystem, both platform stakeholders and platform technology enablers 
must be regulated and governed.  

Figure 13 illustrates the design of EFPF governance framework. 

 

 

 

 

 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 18 / 191 

 

Figure 13: UML Component Diagram of Marketplace Framework 

More details about the EFPF governance framework can be found on the Deliverable D5.2: 
EFPF Security and Governance.  

 Business & Network Intelligence 

The business and network intelligence task focused on identifying and catering to the 
applications of this service for different levels of engagement of a company. To simplify it 
further, the partners have decided to compartmentalise the tools and services under this 
task into three distinct levels:  

Intracompany Level 

This level aims to generate actionable intelligence from activities and processes within a 
company. This category is to do with generating and sharing intelligence for work done 
within the organisation. 

The tools/services introduced under this category are focused on helping manufacturers use 
digital tools that can be accessed through EFPF platform, are simple to use and provide key 
insights towards a certain goal. A few examples are given below: 

• Production KPIs 

A must-have metric of any manufacturing operation are Key Performance Indicator. One 
of the most recognised is Overall Equipment Effectiveness (OEE) which measures the 
overall performance of a given machine, product line or work centre. 

OEE is calculated using the formula of Availability * Performance * Quality and is 
considered the most reliable metric for tracking production performance to the machine 
and plant floor level. 

This can be used to share Overall Equipment Effectiveness between industry members. 
This will offer the opportunity to not only track specific work centre performance but can 
also track average industry performance and see whether there are any short comings 
or where you excel. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 19 / 191 

• Waste Monitoring Intelligence 

Waste monitoring gives businesses the opportunity to automatically track bin fill levels 
and compare local suppliers to find the best price.  

This will offer benefits for both customer and supplier. Suppliers will be able to track 
businesses within a perimeter that all require the same waste disposal. Whereas, 
customers will have the opportunity to monitor waste levels year-round and identify parts 
of the calendar year where waste levels may be higher. 

• Factory Environment Monitoring 

Manufacturing effectiveness can be dependent on many factors. To assist with 
managing any extenuating circumstances that would affect production, the factory 
environment can be tracked.  

A great example of this in practice would be within aerospace industry where 
temperature effects metal with thermal expansion, to reduce any issue with incorrect 
parts live data could be married with predictive weather and forecasted temperature 
data. 

Platform/Network level 

Aims to generate intelligence from the existing networks that a company is already involved 
in as part of their supply chains and other business activities. This category is to do with 
analysing all work that goes on in the existing networks of a company. 

The solutions introduced under this category are briefly explained below: 

• Platform & Network Intelligence Solution 

The Platform & Network Intelligence solution collects data around the usage of and 
traffic flow within the EFPF platform. Through the collection and analysis of both the 
search events and login events that take place within the platform, the insights gained 
from the analysis are visualised and presented within a dashboard in the EFPF portal. 
This enables users to gain intelligence not only about the trends within the EFPF 
platform, but also within its ecosystem of connected platforms through the Federated 
Search feature. 

 
Figure 14: Architecture of Platform & Network Intelligence Solution 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 20 / 191 

 

• iQluster Platform 

iQluster is a supply chain intelligence platform that is designed to facilitate supply chain 
visibility, easily share data and engage the lower tier supplier by creating a digital 
community.  Unlike most platforms which are ‘one to many’ in design, iQluster leverages 
its ‘many to many’ platform model to engage every stakeholder, big and small. The idea 
is to return some benefit to every company that joins and share data/information with 
the network. This creates a direct benefit to for each user and the benefit compounds 
as we move up the tiers of supply chain as this data aggregates and reflects unparalleled 
intelligence that is otherwise fragmented or unavailable. 

iQluster combines the conventional ‘top down’ supply chain mapping with an innovative 
‘bottom up’ approach to address the gaps. iQluster’s data science expertise creates a 
great take off platform by big data scrapping to identify key intelligence about companies 
in supply chain. Then, the suppliers are invited to join the platform and a unique 
incentivisation model is used to boost adoption rates 

 

Figure 15: iQluster supply chain intelligence platform's Explore Map 

• Tendering and Bid Management 

Tendering and Bid Management or Business Opportunity is a platform that will give 
SMEs a chance to offer their services for income generating opportunities. This will be 
achieved through three main elements: a company directory profile; a business 
opportunity board – where you can apply for tenders or search for relevant business 
opportunities; along with a messaging system. This will allow procurers to find 
prospective supplies, post opportunities and contact suppliers all within one portal.  

Within the functionality to search both the directory and business opportunities, we will 
offer insight for businesses on the current marketplace. Data will be gathered and 
represented, so that supplies can see the requirements of procurers. For example, if 
procurers are regularly looking for suppliers that hold specific accreditations (i.e. QS 
9000) suppliers will be able to make an informed decision on what is necessary for their 
business development. This will also offer the opportunity to observe the market and 
give the opportunity to win business better. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 21 / 191 

Market Intelligence 

Finally, for the residual factors that are not covered in internal workings and that of other 
connected companies through their network, a market intelligence tool (Figure 16) is being 
introduced. This service aims to utilise advance data engineering and ML (machine learning) 
over openly available public data streams such as national company registers, websites, 
financial and credit rating databases etc. to provide an insight in to the movements in market 
conditions.  

The task partner VLC have proposed to introduce this standalone application directly onto 
the EFPF platform. While the development of this service is still in progress, this section will 
share the specifications and scope of this application.  

The intended application for the platform users could be to use this service to find potential 
customers and suppliers that they did not know of and to explore working with them to 
expand their business. Some other methods are being explored where a user could benefit 
from getting a demographic summary of the companies in a region for example, to 
understand “how many competitors or potential customers are there in this region?” and 
“how should I strategize to enter a strong growth sector with big presence in my region?” 

 

Figure 16: Sample SIPOC diagram from spec document – Market Intelligence Application 

 Smart Contracting 

The EFPF project aims to provide a smart factory ecosystem as an open platform to 
manufacturing and logistics companies, while incorporating innovative approaches for 
solving industrial problems. The Blockchain and Smart Contracting component provides a 
trusted system for smart contracting agile networks in the EFPF ecosystem. This component 
is based on the distributed ledger technology systems provided by the base platforms.  

Distributed ledger technology (DLT) is a suitable design mechanism [KRU04] for persistence 
when the system is situated in an environment where three main conditions exist: 1) a 
distributed, immutable log of transactions is needed, 2) there is a need for distributed trust 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 22 / 191 

and 3) there is an incentive to manipulate data. Major design concerns for the architecture 
of the Blockchain and Smart Contracting service were: 

• The Blockchain Smart Contracting service and the chosen implementation mechanism 
(blockchain framework) should be a private3, not a public distributed ledger technology 
system. 

• The Blockchain Smart Contracting service and the chosen implementation mechanism 
(blockchain framework) should have the capability to be a permissioned distributed 
ledger system, requiring authorization to perform a particular activity or activities.  

• Due to the nature of EFPF business networks, the Blockchain Smart Contracting service 
and chosen implementation mechanism should have the capability to be private, i.e. 
accessible for use only to a limited group of DLT users, a consortium. 

• Sector Agnostic – the solutions should be usable by cross-sectorial stakeholders e.g. in 
production, distribution and by customers. 

• The Blockchain Smart Contracting service should be a federation level solution, no single 
entity will own the process of Blockchain. 

• All stakeholders will be able to access and use the Blockchain Smart Contracting service. 

Use cases 

The design process towards the blockchain and smart contracting service is bottom-up, 
solidifying and merging the existing base platform approaches into EFPF, while taking into 
account the core project objectives and user requirements. Use cases have been selected 
and explored to build a sectoral agnostic, distributed service accessible by all EFPF 
stakeholders. 

From exploration of a selected pilot applications, technology and solutions will be tested and 
evaluated. Functionality and design patterns in the different scenarios will be generalized to 
support arbitrary business processes and provide re-usable blockchain application building 
blocks and services. The goal is to provide a blockchain platform that can support value co-
creation in the EFPF ecosystem, with stakeholders extending the existing functionality in a 
modular way.  

After a thorough analysis of the EFPF digital manufacturing platform ecosystem, we 
identified the following areas that could benefit from the use of blockchain technologies 
[VIDR18]: 

• Identity Management: Offering unique identities to authenticate and authorize 
participants of the network 

• Track & Trace: Enabling historical records with information including provenance data 
and an audit trail of the different assets, chronologically ordered 

• Permission Handling: Supporting different access rights, depending on each user’s role 
and organization 

• Contract Management and Procurement: Supporting smart contracts to arrange the 
required logistics such as payment, shipping, etc. 

 
3 https://www.iso.org/obp/ui/#iso:std:iso:22739:dis:ed-1:v1:en 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 23 / 191 

• Quality Control and Accountability: Adding a unique tag to every transaction that 
takes place in the ecosystem to achieve new levels of quality assurance and 
accountability 

• Scalability: Facilitating the acquisition of new partnerships among the manufacturers by 
utilizing cryptocurrencies 

• Authenticating IoT: Enabling identities for remote devices 

• Tamper Proofing: Giving each record a verifiable date and time 

• Encryption: Ensuring the data transmitted over a public network 

• Protecting intellectual property management and control  

Identity Management and a Supply Chain Mobile app using sensor data to provide 
provenance and tamper proofing have been developed and are described in the deliverable 
D3.1. At the time of writing, further pilot scenarios to apply the Blockchain and Smart 
Contracting platform have been selected and are under development together with pilot 
partners:  

• Circular Economy 

• Track and Trace 

• Shipping DApp 

These pilot scenarios are described in more detail in D5.2.  

Design of Blockchain-based Applications 

In EFPF, the use cases are concentrated around businesses with private data, thus 
excluding the use of public blockchain solutions. By following market best practices, we had 
to select among well-established blockchain frameworks. After a thorough research, we 
concluded that private and consortium-based frameworks, e.g. Hyperledger Fabric and 
Hyperledger Sawtooth with Hyperledger Grid support already implement Proof of Concepts 
and provide out of the box solutions for value chain and supply-chain use cases in EFPF. 
The design decision was taken to use Hyperledger Sawtooth as the primary blockchain 
implementation mechanism. On this implementation mechanism, we can build private, 
permissioned blockchain applications that are not limited in domain and accessible to all 
stakeholders. Consensus nodes can be hosted by a subset of the partners in the business 
network. No single entity needs to own the blockchain.  

The decision was influenced by the following characteristics of the Hyperledger Sawtooth:  

• Separation Between the Application Level and the Core System 

• Private Networks with the Sawtooth Permissioning Feature 

• Parallel Transaction Execution 

• Event System 

• Ethereum Contract Compatibility with Seth 

• Dynamic Consensus 

• Sample Transaction Families 

• Real-world Application Examples. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 24 / 191 

By further exploration of blockchain and DLT state-of-the-art tools, we have noticed a 
framework with rapidly growing support, which could be of interest to our applications in 
EFPF. This framework is called DAML (Data Asset Modelling Language)4 and represents a 
high-level domain-specific language that provides an abstraction layer on top of both 
traditional databases such as PostgreSQL, and blockchain implementations, recently 
including Hyperledger Sawtooth5 and Hyperledger Fabric. DAML decouples the distributed 
trust models, data schemas and business logic - the smart contracts - from the 
implementation details of communication, cryptography, distributed data stores and 
synchronization. DAML is based on the functional programming language Haskell and 
designed to build distributed applications by describing data schemas, smart contracts and 
identity management. It will be further evaluated and considered for use in EFPF, as it is 
open source (Apache 2.0) and compatible with the design decision to use Hyperledger 
Sawtooth. In addition, DAML promises a business oriented, declarative way to build 
distributed applications using blockchains.  

 Data Analytics 

During the manufacturing activities – from production to supply chain enactment – a huge 
amount of data is generated; some of this is a well organised and stored for utilisation, but 
much more is not captured or not utilised and thus the potential value is not extracted.  With 
advanced big data analytical techniques, the insights locked in the data captured from 
manufacturing activities can be unleashed and used to not only improve the development, 
production and supply processes, but also transform the business aspects. In this respect, 
the data analytic solutions gathered in the EFPF platform are representative of the needs of 
manufacturing companies for better visibility into distributed processes, better 
understanding of complex problems and better investigation of optimisation potential.  

The data analytic solutions in EFPF are either the enhancements of the features that are 
already validated in the base platforms or are developed to satisfy the specific needs and 
requirements of manufacturing users in the EFPF ecosystem. Overall, the data analytic 
solutions in EFPF include Machine Learning based anomaly detection solutions, deep 
learning toolkit to analyse for price forecasting of materials, shop-floor monitoring solutions 
and customer behaviour analysis solutions. The overview of these solutions is available in 
the EFPF deliverable D4.1: Smart Factory Solutions in the EFPF Ecosystem. 

Visual and Data Analytics Tool 

The visual and analytics tool provides different type of analytic solutions for both predictive 
maintenance and supply chain optimization activities alongside with advanced 
visualizations. It is a web-based tool that is accessible through EFPF portal only to 
authorized users. The tool is able to analyse and visualize historical data that are stored in 
its internal data store. Furthermore, the tool is able to analyse or visualize data coming from 
sensors on real time by using a factory connector based on MQTT protocol. Besides this, 
the tool supports HTTP connectivity as well. The next figure highlights the main internal 
components of the tool and its interactions. The analytic functionalities and the user 
interfaces of the tool are described in D4.1. 

 
4 https://daml.com/ 
5 https://github.com/blockchaintp/daml-on-sawtooth 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 25 / 191 

 

Figure 17 Visual and Data Analytics Tool UML component diagram 

 Workflow & Business Process 

The Workflow and Business Processes automation services in the EFPF platform is 
provided by WASP (Workflow and Service Automation Platform). WASP offers a solution for 
fast automation of internal or distributed processes regardless of their nature e.g. whether it 
is an internal process that interlinks several internal activities; or a distributed process with 
multiple tasks performed by different stakeholders. WASP is able to interlink and orchestrate 
the automated services, manual services or the combination of both.  

Offered as a Cloud based service with an intuitive GUI, WASP allows users to design, 
execute and monitor multiple processes where each process may be composed of several 
activities that are either performed manually (and status updates are provided through 
human interfaces) or are executed automatically through web-services. In the EFPF 
platform, WASP is accessible through the EFPF portal using the EFPF Single-Sign-On 
security features. 

 Secure Data Store 

Secure Data Storage facilitates connecting sensor data with analysis tools, by collecting 
data over time for latter access by analysis tools, while allowing data owners the explicit 
control of how to share data with the analysis tools. Fine grained data management controls 
are used to authorize data access, with pseudonymization techniques to protect data at rest. 
Secure Data Storage consists of a collection of Docker images, which are intended to be 
deployed by data owners on their own premises. While the exact configuration is flexible, 
parallel deployments of the API server and dependent databases is assumed. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 26 / 191 

 

Figure 18: Secure Data Store Architecture 

 Smart Factory Tools & Services 

The EFPF ecosystem makes available a diverse catalogue of Tools and Services from the 
base platforms that can be used by end users to deal with a range of factory applications. 
Tools can be used in isolation or combined by interfacing them using the Data Spine 
functionality in order to create smart factory composite solutions. 

1.2.2.11.1 Data Model Transformation Tool Suite 
In state-of-the-art open source enterprise integration platforms, performing data 
model/schema transformation is still a manual task. Therefore, it makes the service 
integration process slow, tedious and expensive. Also, the semantics of the data to be 
transformed and other service metadata required for writing the schema mapping rules are 
often not well-documented and hence this process becomes error-prone too. 

The objective of the Data Model Transformation Tool Suite is to address the problems listed 
above. As shown in Figure 19, the tool suite contains semantic repositories to facilitate the 
lifecycle management of functional as well as technical metadata of services based on 
standard vocabularies and the lifecycle management of these standard vocabularies. In 
addition, it provides a Data Model Transformation (DMX) Tool that guides the system 
integrator for writing the mapping rules in a semi-automated way, thereby reducing the 
human involvement to make it faster, easier and more efficient. The tool suite is currently in 
conceptualization phase and a detailed description of it would be included in the deliverable 
D4.2. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 27 / 191 

 

Figure 19: Conceptual Components of Data Model Transformation Tool Suite 

1.2.2.11.2 Blockchain Framework 
This blockchain framework from base platform COMPOSITION has been redesigned and 
modified to use the blockchain implementation chosen for EFPF, Hyperledger Sawtooth. 
The mobile DApp has been made multi-platform and is being adapted to EFPF pilot needs. 
To further strengthen the integration with EFPF the shipping process is being reengineered 
to work with a BPMN process engine, which will allow the user to configure the process in 
the WASP tool.  

To deploy the shipping DApp, a peer-to-peer network of blockchain nodes needs to be set 
up. There are already nodes set up that is currently used by the DApp, new nodes can attach 
to this network or build a new private consortium blockchain. The first version used 
Multichain 2.0 nodes, while the next update one will use Hyperledger Sawtooth as the other 
EFPF blockchain applications. The DApp needs to be deployed to the mobile unit (iOS or 
Android) through the development IDE. At the time of writing, it is not published to App Store 
or Play. 

The key feature of the mobile app is to use physical interaction to address weak points or 
loopholes where to manipulate the supply chain. We use added sensor data and biometric 
identification to corroborate the transaction data (e.g. a receipt of received goods). As the 
data is a representation of a transaction taking place in the physical world and entered into 
the blockchain, it cannot be validated by the blockchain transaction rules or smart contracts 
directly. To circumvent this reliability problem of physical interfaces we add other metadata 
such as NFC tags, weight, images and sign in with face or fingerprint id to provide other 
evidence that the event took place as described. 

Figure 20 shows the architecture of the blockchain framework. 
 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 28 / 191 

 

Figure 20: Architecture of Blockchain Framework 

1.2.2.11.3 Industreweb Global 
Industreweb Global (IW Global) is a web framework that provides data visualisation, storage, 
workflow co-ordination as well as Administration and Security Management tools for the 
Industreweb Ecosystem. Industreweb Global contains Administration Tools that can be used 
for a variety of tasks, these include: 

• Edit Industreweb Collect node configurations  

• Manage, create, and edit Industreweb Display programs  

• Authoring Collect Programs is done using a drag and drop interface based upon 
Google Blockly. 

• Manage, create, and edit Industreweb Display screens  

• Authoring and editing Display screens is performed using a responsive bootstrap 
drag and drop UI which includes a palette of screen components, which can be 
dragged onto the page 

• Manage user logins for Administrators and Users to view screens  

• Configure settings on back end services to affect systems functionality  

IW Global also offers solution specific Industreweb Applications to be used, these tools 
include: 

• IW Display 

• Visualisation tool designed to display product information such as production 
faults, production performance, waste and historical reports 

• IW Vactory 

• Makes data available in a WebGL 3D UI that maps data points to a digital twin of 
the production assets. 

• Can be used to monitor production processes in a more intuitive way 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 29 / 191 

• Work Instructions 

• Allow screens to be displayed to users based on the operation that they need to 
perform 

• Error Proofing 

• Allows for operator error scenarios to be modelled so that when they arise, the 
machine can either display a corrective message or the process can be inhibited 

• Fault Escalation 

• Allows alerts to maintenance staff when an error arises, for corrective action to be 
taken 

 

Figure 21: Architecture of Industreweb Global 

1.2.2.11.4 Risk Tool 
The Risk Tool enables users to create and customize risk recipes, capable of transforming 
input data into a new shape. These risk recipes can be chained into risk workflows that 
receive data through MQTT, and at the end produce risk metrics and statistics, which are 
also published via MQTT. It will also support notification functionality that notifies the user 
whenever a risk exceeds some threshold. These functionalities are written in a Python 
backend. 

Additionally, the Risk Tool contains a configuration frontend that lets the user create and 
edit recipes and workflows visually. It also allows the user to test the recipes and workflows 
and start/stop the MQTT subscriptions of workflows. Lastly, users can see the last output of 
a running workflow. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 30 / 191 

There is also going to be a monitoring frontend, more focused on the visualisation of the 
workflow outputs. It will display figures of the data and risks but will not allow for any 
configuration (except (un)subscription). The frontends are React webapps, written in 
JavaScript. The webapps interface with the backend through its API. 

The relation between the different components of the tool are displayed in Figure 22. 

 

Figure 22: Risk Tool UML Diagram 

1.2.2.11.5 Catalogue Service 
Catalogue Service is a platform for product / service publishing and it is the main enabler of 
the partner discovery phase as it allows companies to introduce themselves to the EFPF 
platform with the products they supply and the services they provide. 

To enable users to find what they are looking for quickly, Catalogue Service offers publishing 
products with semantically relevant annotations. It makes use of generic and sector-specific 
taxonomies as knowledge bases from which relevant annotations can be obtained 
automatically given a product category. The main taxonomy used in Catalogue Service is 
eClass which is an ISO/IEC compliant industry standard for cross-industry product and 
service classification. Further, available taxonomies can be extended with domain-specific 
taxonomies such as Furniture Taxonomy and Textile Taxonomy as well. 

Catalogue Service makes use of Universal Business Language (UBL), a world-wide 
standard providing a royalty-free library of standard electronic XML business documents 
that are commonly used in supply chain operations, as the common data model since it 
contains appropriate data elements for catalogue/product management such as catalogues, 
products, product properties and so on. Moreover, products and services as well as 
catalogues are persisted on a UBL-compliant relational database.  

The data and metadata regarding products and services are managed in different ways. 
While metadata are kept in a global registry; raw data, which could have varying formats, 
are kept in disparate repositories. Maintaining all the metadata in a single repository enables 
querying on products having heterogeneous structures initially. Once a product is identified, 
its complete, structured definition can be fetched from the respective repository.  

The relevant UML component diagram of Catalogue Service can be seen in Figure 23. 

 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 31 / 191 

 
Figure 23. Catalogue Service UML Diagram 

1.2.2.11.6 Symphony Event Reactor 
The Symphony Event Reactor gives the ability to trigger actions and alarms through its 
Event Manager/ Alarm Manager in response to different kinds of event types. Moreover, it 
offers a logging and lifecycle system for alarms. The data model of events is based on a 
JSON Schema which is human-and-machine readable and dynamically updatable. The 
event reactor is written in Python and has a GUI written in Blockly (Google), a free and open 
source client-side JavaScript library for creating block-based visual programming languages 
(VPLs) and editors. 

The Symphony Event Reactor leverages on a highly customisable logging system that 
allows to handle events locally and synchronise them remotely, together with user activity 
and alarm history. 

The Symphony Event Reactor is composed of two separate software modules: 

• Event Manager (EM): The EM executes custom rules that combine information 
coming from different sources (local sensors and device monitors, user actions, video-
cameras, intrusion detection systems, etc.) and data brokers (e.g. AMQP, MQTT) to 
determine actions to be taken. Actions include actuations on field devices, activation 
of scenarios, generation of events, notifications and alarms, and so on 

• Alarm Manager (AM): Alerts can be raised in order to present the situation to specific 
users or user-groups. The system provides a configurable priority based alert routing 
system that allows to target a single, a group or mixed sets of users with SMS, emails, 
pop-ups, etc. The AM has an internal state machine to track each alarm’s status (Open, 
Close, Acknowledged, Resolved, Delivered). Also, it logs and keeps alarms history in 
a log database which is accessible through a REST interface. Different notification 
channels for the AM are being developed. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 32 / 191 

 

Figure 24 Symphony Event Reactor's UML Diagram 

1.2.2.11.7 Symphony Data Storage 
Symphony Data Storage is a highly scalable and high-performance data storage which is 
designed to handle large amount of AMQP/MQTT data. It offers aggregation, rate limiting 
and sub-sampling, configurable data retention policies and synchronization across multiple 
instances. It accepts AMQP and MQTT as data source input and provides REST as output. 
Symphony Data Storage is designed to handle large amounts of data and providing high 
availability with no single point of failure. Also, it supports PostgreSQL, Cassandra and 
ElasticSearch as backends. 

 

Figure 25 Symphony Data Storage's UML Diagram 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 33 / 191 

1.2.2.11.8 Factory Connectors & Gateways 
In order to access data from the numerous data sources available within the manufacturing 
facilities of members of the four base platforms, it is necessary to utilise a Connector or IoT 
Gateway that can interface with the devices, sensors and systems. This can be made 
available through a user defined data model for Smart Factory Tools to be able to operate. 
The purpose of data provided by these connectors varies from production status, alerting, 
Kanban / stock level monitoring, to energy consumption, machine/ process efficiency, and 
more.  

In EFPF there are multiple implementations of Factory Connectors & IoT Gateways, 
supporting between them the most widely used industrial standards and systems (e.g. OPC 
UA, Siemens, Rockwell, Omron, Schneider etc.). 

1.2.2.11.9  Industreweb Collect 
Industreweb (IW) Collect is a high-speed data engine that interfaces with a range of systems 
and devices with the aim of extracting business critical data. All data sources are then 
transformed to a common data model to allow processing and event triggering.  

Data sources can include industrial control systems (e.g. PLC, CNC) both modern models 
with Ethernet capability and legacy equipment, wireless networks and devices such as 
ZigBee, and industrial networks such as Profinet, Profibus, Modbus and AS-interface. It can 
also connect and interrogate databases such as MS SQL and MySql, and flat file formats 
such as XML and JSON. 

The architecture UML diagram of IW Collect is shown in Figure 26 which is based around 
the concept of connectors to enable it to monitor a diverse range of data sources. Data 
acquired from connectors interfaced with the production systems and sensors. To 
commission the system, the industrial PC must firstly be interfaced with the production data 
sources, which typically involves physically connecting the required networks, and the 
installation of any intermediate 3rd party hardware such as network switches or wireless 
transmitter/ receivers. Once this has been carried out the interface settings are defined by 
editing the connector´s configuration file, which defines each data source connector and its 
properties necessary to function. 

Following this stage, the rules to orchestrate the collection and manipulation of data are 
created which are based on logic events and subsequent actions. The system is then run in 
the background as a Windows Service, constantly monitoring the manufacturing process. 

Actions that IW Collect can trigger may include changing data in a connector, displaying an 
alert on a screen, sending an SMS or email, or writing a value to a database. 

For interfacing with the MQTT broker in EFPF the data is collected from the range of 
production systems and sensors via the appropriate connector instance and mapped to the 
MQTT connector instance data model. Upon data changing within the process or at a set 
time interval the MQTT broker publishes the data. This is then subscribed to by the Smart 
Factory Tools and Services. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 34 / 191 

 

Figure 26: Industreweb Collect UML Diagram 

1.2.2.11.10 TSMatch Gateway 
TSMatch (Thing to Service Matching) solution provides matching between Things and IoT 
services via a data matching based on service requirements description. TSMatch solution 
is in the design phase and is composed of two main components: 

• TSMatch Application: is an Android application that provides an interface for users 
(end-users and IoT services) to specify requirements (data inputs, area of interest, 
observation rate, threshold, etc.) and notify users about updates (which are responses 
to the user’s requests).  

• TSMatch Gateway: is a software component that receives requests from the TSMatch 
application and performs data matching to see if the request can be fulfilled. The 
TSMatch gateway works as follows: first, it selects the optimum set of Things to respond 
to the request, then decides if additional data processing is required to transform the raw 
IoT data to match the information requested by the user. This is achieved through 5 main 
subcomponents: 

• Thing Discovery: discovers the IoT devices descriptions and data streams 

• Context Model: builds a semantic model of the environment context based on the 
descriptions of the IoT devices. The goal of the model is to identify if the user 
request can be answered based on the current context.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 35 / 191 

• Negotiator: interfaces between the TSMatch gateway and App. It receives the 
user’s requirements descriptions through the TSMatch App and informs the user 
about the outcome of the request (meaning if the request can be fulfilled or not) 

• Service Mapping: provide a match between the service requirements and the IoT 
devices by selecting an optimum set of IoT devices capable of answering the 
request and deciding if additional data processing is required 

• Data Stream Transformation: based on the selected IoT devices and the service 
requirements (i.e. threshold, update rate), data stream transformation component 
subscribes to the raw data and sends updated to the TSMatch App  

 

Figure 27: TSMatch Gateway UML Diagram 

1.2.2.11.11 Symphony Hardware Abstraction Layer (HAL) 
Symphony Hardware Abstraction Layer (HAL) primarily abstracts the low-level details of 
various heterogeneous fieldbus technologies and provides a common interface to its users. 
It adapts the device protocols and provides the necessary logic to manage them accordingly 
to their respective constraints (e.g. timing constraints). It also implements optimizations, e.g. 
avoid spamming the KNX bus6 with too many messages, pack contiguous Modbus reads 
into a single multi-register read. 

 
6 https://www2.knx.org/no/knx/association/what-is-knx/index.php 

http://www.efpf.org/
https://www2.knx.org/no/knx/association/what-is-knx/index.php


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 36 / 191 

 

Figure 28: Symphony HAL’s UML Diagram 

The HAL supports KNX, BACnet, Modbus-TCP, Modbus-RTU as well as, several other 
proprietary control protocols. It can be extended by developing modules that can be 
dynamically plugged into its core. It can be interconnected with specific field buses either 
directly (via RS232/485 serial ports or GPIOs) or through the use of IP based gateways, 
such as KNX IP router and/or interface, Modbus/TCP gateways. 

The HAL component provides access to any available resources (sensors and actuators) 
as datapoints. The datapoints are primitive objects with basic data type (int, float, boolean) 
but devoid of any semantic annotation (physical object type, measurement unit, …) or are 
presented according to the OGC SensorThings data format standard. The HAL supports 
access via REST and gRPC and furthermore enables publish/ subscribe features via MQTT. 

1.2.2.11.12 Factory Connector Gateway Management Tool 
 
The Factory Connector Gateway Management Tool (FCGMT) is an administration tool for 
Factory Connectors and IoT Gateways in the EFPF platform. This consists of a frontend 
application (FC frontend) - which is directly accessible from the EFPF portal or as a 
standalone application – and an API to interact with the device data managed through the 
frontend (FC API). 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 37 / 191 

 

Figure 29: FCGMT’s UML Diagram 

The Service Registry API is initially consumed to get the main relevant information about 
Factory Connectors and IoT Gateways registered in the EFPF platform. 

Furthermore, the FCGMT provides an API to register particular IoT devices which may play 
the role of producers (data publishers) or consumers (data subscribers). The producer 
devices are able to create and publish data on specific topics (parent or subtopics) 
depending on the authorization. In the same way, subscriber devices are able to listen to 
allowed topics. In order to manage the authorization access, the API provided by the API 
Security Gateway is also consumed by this tool. 

In addition, the operations to directly interact with the Message Bus have been considered, 
and therefore will be integrated in the FCG API using a preliminary development of a 
RabbitMQ API that manages the creation of resources in the Message Broker, such as 
exchanges, queues and bindings between queues and routing keys, which are in the end 
equivalent to the topics concept in MQTT. 

 EFPF Architecture Information View 

This section describes dataflow in the EFPF ecosystem at different levels of detail. First, a 
very high-level overview of service-to-service communication in the EFPF ecosystem 
through the Data Spine, with the Data Spine as a ‘black-box’ is presented. Second, the 
dataflow between the services that follow synchronous (request-response) communication 
pattern at run-time through the Data Spine is presented with the help of an example. Finally, 
the dataflow between the services that follow asynchronous (publish-subscribe) 
communication pattern at run-time through the Data Spine is presented with the help of an 
example. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 38 / 191 

1.3.1 High-level Dataflow in the EFPF Ecosystem 

The EFPF ecosystem is based on a federation model. The services belonging to different 
platforms are heterogeneous and interoperability gaps exist between them at the levels of 
protocols, data models, data formats, data semantics, and also authentication providers. 
Data Spine is the gluing mechanism that is capable of bridging these interoperability gaps 
and enabling communication between them, thereby enabling communication in the EFPF 
ecosystem. In order for a pair of heterogeneous services in the EFPF ecosystem to 
communicate with each other, they are integrated through the Data Spine at first. Once the 
integration is done, communication can happen. Figure 30 shows a very high-level overview 
of dataflow between such heterogeneous services in the EFPF ecosystem through the Data 
Spine, with the Data Spine as a ‘black-box’. The subsequent sections illustrate the dataflow 
in the EFPF ecosystem at greater levels of detail. 

 

Figure 30: High-level Dataflow through Data Spine 

1.3.2 Synchronous Dataflow in the EFPF Ecosystem 

Figure 31 illustrates an example of dataflow at run-time between synchronous services in 
the EFPF Ecosystem. It shows an example of a request-response workflow for EFPF the 
Marketplace service where the Marketplace services fetches a list of products and services 
from the marketplaces of the base platforms and displays them onto a GUI. The Marketplace 
GUI initiates the call to its backend. The Marketplace Backend searches for services of type 
‘marketplace’ in the Service Registry through a proxy endpoint in API Security Gateway and 
discovers the marketplace services of COMPOSITION and NIMBLE platforms. It then 
invokes these services through the Integration Flows created in the Integration Flow Engine 
of the Data Spine and gets a response. The data models of responses from these 
marketplace services are transformed to the EFPF Marketplace’s data model through the 
Integration Flows. Finally, the Marketplace backend aggregates the responses, hands over 
the data to the GUI which then displays it onto a Webpage. The exact detailed steps for this 
kind of synchronous communication workflow are explained in Sections 2.3 and 2.4. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 39 / 191 

 

Figure 31: Example of Synchronous Dataflow in the EFPF Ecosystem 

1.3.3 Asynchronous Dataflow in the EFPF Ecosystem 

Figure 32 illustrates an example of dataflow at run-time between asynchronous services that 
follow publish-subscribe communication pattern in the EFPF Ecosystem. This example 
presents a scenario where the Risk Tool receives data from the Factory Connectors through 
the Data Spine, analyses it, calculates risk and the Event Reactor based on this risk 
generates an alert. In this example, the Factory Connectors/Gateways ‘IW Collect’ installed 
at ‘Factory 1’ and ‘HAL’ installed at ‘Factory 2’ publish data to the Data Spine Message Bus. 
Through the pre-configured Integration Flows, this data is transformed to align with the Risk 
Tool’s data model and is published again to the Message Bus over new topics. The Risk 
Tool subscribes to these new topics and gets the data. It then analyses the data and 
identifies the risk associated, if any. The data could be the status of production with a 
delivery date for example and delayed delivery date could be a risk that the Risk Tool 
identifies. Once the Risk Tool identifies a risk, it publishes the risk data to the Message Bus. 
Again, through another pre-configured Integration Flow, this data is transformed to align with 
the Event Reactor’s data model and is published again to the Message Bus over a new 
topic. The Event Reactor subscribes to this new topic, gets the risk data and generates an 
alert. The exact detailed steps for this kind of asynchronous communication workflow are 
explained in Sections 2.3 and 2.4. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 40 / 191 

 

 

Figure 32: Example of Asynchronous Dataflow in the EFPF Ecosystem 

 

 EFPF Architecture Development and Deployment View 

1.4.1 Deployment Process 

 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 41 / 191 

 

Figure 33: The EFPF Ecosystem and its Components 

For the components framed in red colour in Figure 33 - the Management Services, the Portal 
and Marketplace components, the Secure Data Storage and the Data Spine - the hosting, 
deployment and operational requirements would be specified. The Collaboration Services 
and Base platforms are individually installed and configured by the responsible partner 
(defined in D6.1 and D4.1). A number of components do not allow access to source code or 
runtime environment (see D10.1) and cannot be deployed and operated by other partners. 
However, the recommendation for all components in EFPF is to use Docker images as unit 
of deployment and comply with operational management requirements.  

A GitLab repository is currently used for project planning, source code management as well 
as continuous integration (CI), continuous delivery (CD) and monitoring. The core 
components are migrating towards this setup. The continuous integration and testing 
environment are available to all EFPF base platform and service providers but mainly used 
for the core EFPF infrastructure. The repository will be successively populated and adapted 
for integration of additional external base platforms and/or tools.  

The deployment process in EFPF is based on containerization using Docker. GitLab CI/CD 
can be used to build new version and push versioned docker images to the EFPF registry 
(Gitlab Artifact Repository).  This allows for an automated deployment and rollback process 
that is not dependent on component developers.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 42 / 191 

 

Figure 34: EFPF Deployment Process 

Component deployment 

The core components that will have a defined deployment pipeline. Although Docker images 
in the recommended unit of deployment, other components may be deployed in various 
ways and on different platforms.  

1.4.2 Environments 

Starting with the Data Spine, a 3-tier deployment model is being used, composed of a 
development, testing and production environment. 

Environment Content Provider 

Development Development version where new updates 
will be made. 

FIT / SRFG 

Testing Test version to verify the integrated Data 
Spine. Elements passing quality gateway 
may be brought into Production. 

C2K 

Production Stable live version used by all, including 
the open calls 

C2K 

Figure 35: Data Spine Deployment Environments 

The environments will have different rate and type of change.  

Development will be a less stable environment where e.g. component connectors, security 
mechanisms and network topology may change. There may be in-place changes by 
developers in the development environment and no quality gateways – apart from unit tests 
– are needed to deploy anything there. Malfunctions and conflicting versions are solved by 
developer-to-developer communication on instant messaging channels. 

The testing environment serves as a more stable environment for integration testing. 
(Although this is not the intended use, some performance testing can also be done there.)  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 43 / 191 

Components are deployed to the test environment by script, using docker images as unit of 
deployment for EFPF hosted components. Configuration should be complete and no in-
place changes needed. If a new version does not pass the quality gateway, it is rolled back, 
corrected, and re-deployed, not edited in place. 

Once the component passes the quality gateway, this version may be deployed to the 
production server.  

The policies for API management apply and a quality gateway is applied. 

The environments should be isolated. No connections are set up between development, test 
and production. An exception could be factory connectors feeding data to the test 
environment. 

An open issue is how to manage data in the test environment. Both streaming and static 
data is often needed for integration tests. Streaming data could be mirrored from the 
production environment (not recommended for security reasons), provided in a “playback 
loop” that provides a fixed sequence of observations and events that each component can 
use for test purposes, or each component can inject its own set of test data into relevant 
streams. Static data, e.g. in the Secure Data Store, should not be considered stable. 
Integration tests that change static data should set up and restore the data sets needed. 
Some global data may have to be versioned in sync with component versions, or a policy of 
restoring all data on a set interval may be used. This will be selected depending on emerging 
needs and practices. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 44 / 191 

2 Design and Realisation of Interoperable Data Spine 

This section presents in detail the interoperability backbone of the EFPF ecosystem – the 
Interoperable Data Spine. First, it describes in brief the need for having such a component 
in the EFPF ecosystem. Second, it elaborates the design of the Data Spine in the form of 
identification of the conceptual components that constitute the Data Spine. It also presents 
the reference architectures of these conceptual components which are independent of the 
implementation aspects. Finally, it presents the open source platforms, services and tools 
chosen to realise these conceptual components of the Data Spine. 

 Design of Interoperable Data Spine 

The EFPF ecosystem is based on a federated model which consists of distributed, 
heterogeneous digital platforms, tools and other components developed, provided and, in 
some cases, hosted by independent entities. Therefore, their technical aspects such as 
interfaces, protocols, data formats, data models, identity and access management 
mechanisms, etc., differ significantly from each other and direct communication between 
their services isn’t possible. There could be many different ways to address this problem – 
one such way could be to design standardized APIs based on the identification of common 
standards and abstractions and ask Service Providers and Service Consumers to implement 
connectors/plugins so that the former can align their proprietary APIs to these standard APIs 
and the latter can consume these standard APIs to enable communication. However, such 
approaches are not desirable as they need significant modifications to the existing tools, 
services, systems and platforms that need to communicate with each other among other 
shortcomings. A solution that provides a communications layer that acts as a 
translator/adapter between these heterogeneous tools, services, systems and platforms 
providing data handling, routing capabilities and API adaptation functionalities and enabling 
communication without needing modifications to the existing services is needed. The EFPF 
Data Spine is designed to provide such a solution that address these problems. 

Data Spine is a collection of components that work together to form an integration, 
interoperability and communications layer for the EFPF ecosystem. Sections 1.1 and 1.2.1 
provide an overview of the Data Spine and its conceptual components. Figure 2 depicts 
these conceptual core components that provide the expected functionality of the Data Spine: 

• The Integration Flow Engine 

• API Security Gateway 

• Service Registry 

• Message Bus 

• EFPF Security Portal (EFS) 

The process followed for the identification and design of these conceptual components 
included gathering of interoperability requirements from the base platforms and some of the 
external platforms to be integrated into the EFPF ecosystem. The technical profiles of these 
platforms were documented, which included the specific components from these platforms, 
their maturity levels, exposed interfaces, protocols, data models, data formats, access 
control mechanisms, authentication providers supported, dependencies, programming 
environment, technical documentation, etc. The documented platform profiles are included 
in Annex C of D3.1 and Figure 36 presents a summary of the platform profiles. Based on 
these technical profiles of the base and external platforms, their interoperability 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 45 / 191 

requirements and the other factors mentioned before, the conceptual components of the 
Data Spine were defined. The subsequent sections describe the design and architectural 
aspects of these individual conceptual components and Section 2.1.6 illustrates the 
reference architecture of the Data Spine highlighting the relationships between these 
conceptual components that constitute the Data Spine. 

Technical Aspect Summary of Adaptation by Services 

Protocol HTTP (REST) 

AMQP 

MQTT 

Minor adaptation: WebSockets, RPC, COBRA, RAW 

Data Format JSON 

Minor adaptation: XML, OPC-UP Binary, Proprietary 
(oneM2M/SAREF) 

Data Model UBL 

BPMN 

OGC-SensorThings 

OPC-UA 

Minor adaptation: Proprietary 

Security Method OAuth 2.0 

OpenID Connect 

Basic MQTT Authentication 

Minor adaptation: Basic Auth 

Identity Provider Keycloak 

Minor adaptation: Proprietary 

Figure 36: Summary of Platform Profiles 

2.1.1 Integration Flow Engine 

Integration Flow Engine (IFE) is the component of the Data Spine that provides service 
integration and interoperability capabilities such as connectivity, data routing, data 
transformation and system mediation functionalities. These capabilities could be used to 
bridge the interoperability gaps at protocol level and data model level between the 
heterogeneous services communicating through the Data Spine.  

The Integration Flow Engine, in order to provide these capabilities, borrows concepts and 
functionalities from Enterprise Integration Patterns, Enterprise Service Buses, Big Data 
Processing Frameworks and, Message-oriented Middlewares. It can be said that the 
Integration Flow Engine of the Data Spine is analogous to a dataflow management system 
based on the concepts from flow-based programming [Mor10] that makes use of 
workflows/dataflows to interlink and interoperate between a particular pair of services. In the 
context of the Integration Flow Engine, such workflows/dataflows are termed as ‘Integration 
Flows’. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 46 / 191 

 

Figure 37: Architecture of the Integration Flow Engine 

Figure 37 illustrates the conceptual components to the Integration Flow Engine. The ‘IFE 
Core’ component consists of an ‘Integration Flow Manager’ component that manages the 
lifecycle (Create, Read, Update, and Delete operations) of Integration Flows and the 
Integration Flows are persisted into an inbuilt ‘Integration Flow Repository’. The integration 
flows are designed and implemented as directed graphs that have ‘processors’ at their 
vertices and the edges represent the direction of the dataflow. The processors are of 
different types depending upon the functionality they provide: The processors of type 
‘Protocol Connector’ address the issue of interlinking the services that use heterogeneous 
communication protocols, the processors of type ‘Data Transformation Processor’ provide 
means for transforming between data models and message formats, etc. The edges that 
represent the flow of information support routing of data based on certain parameters. Figure 
31 and Figure 32 show the examples of such Integration Flows that involve synchronous as 
well as asynchronous communication. 

The Processors are the extension points of the Integration Flow Engine. An instance of the 
Integration Flow Engine should have in-built Protocol Connectors for standard 
communication protocols that are widely used in the industry. Support for a new protocol 
could be added by writing a new Protocol Connector and adding it to the Integration Flow 
Engine. 

Figure 37 also shows the interfaces of the Integration Flow Engine. The HTTP REST API 
offers endpoints for lifecycle management of Integration Flows, processors, process groups, 
users, user groups, access policies, etc. The Integration Flow Engine offers an intuitive, 
drag-and-drop style Web-based Graphical User Interface (GUI) to the system integrators to 
create the integration flows which is based on the concepts from visual programming 
[Shu86] paradigm. The Integration Flow Engine and its GUI have support for multitenancy. 
The GUI can be configured based on the defined access policies to allow or restrict visibility 
of and/or access to certain GUI elements. In addition, access policies such as ‘a user or a 
user group should only be able to view and manipulate only the Integration Flows created 
by him/her/them’ can also be defined and enforced. Thus, the GUI of the Integration Flow 
Engine is truly multitenant and enables collaboration among system integrator users who 
create the Integration Flows. Moreover, the Integration Flow Engine supports standard 
authentication protocols such as OpenID Connect (OIDC) to secure access to its GUI using 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 47 / 191 

a pluggable authentication provider such as Keycloak. Therefore, the same user-base from 
the EFS, the identity provider for EFPF, can be used for authentication. 

Finally, to ensure high availability, throughput and low latency, the Integration Flow Engine 
is scalable as it is capable of operating in a clustered fashion. 

2.1.2 API Security Gateway 

The API service in EFPF is handled by the API Security Gateway (ASG). The ASG acts as 
a border gateway for all API calls targeting the Data Spine. In addition to proxying service 
calls in the Data Spine, the ASG should also be able to enforce granular policies for each 
API call. The ASG exposes the services available in the EFPF ecosystem by consuming the 
service registry. The following image shows the UML diagram for the API Gateway. 

 
Figure 38: API Security Gateway 

2.1.3 Service Registry 

In an interconnected EFPF ecosystem, services of different platforms need to be first 
integrated with each other through the Data Spine to enable communication and then they 
can be orchestrated together to achieve common objectives. In order for the services of one 
platform to discover the services of other platforms, the service providers should be able to 
advertise their services along with the associated metadata and make those discoverable 
for the potential service consumers and for the system integrators. As explained in Section 
2.1.1, a pair of services can be integrated with each other through the Data Spine with the 
help of Integration Flows.  

The rationale for having a Service Registry component comes from these requirements that 
the service consumers need a way to search for services based on their functional metadata 
such as ‘service type’ whereas in order to write the integration flows, the system integrators 
need a means to retrieve the technical metadata of the services, e.g. protocols, endpoints, 
data formats, data models, etc. The Service Registry component of the Data Spine fulfils 
these purposes. The Data Spine Service Registry is capable of managing such 
heterogeneous metadata. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 48 / 191 

 

Figure 39: Abstract Class Diagram for the Service Registry 

 

{ 
 "id": "<unique id – custom or uuid>", 
 "type": "string", 
 "meta": {}, 
 "apis": [{ 
  "id": "string", 
  "url": "<base url of the API>", 
  "spec": { 
   "mediaType": "<mediaType type of the API Spec document>", 
   "url": "<url to API Spec document>" 
  }, 
  "meta": {} 
 }], 
 "created": "2020-06-05T15:46:36.793Z", 
 "updated": "2020-06-05T15:46:36.793Z" 
} 

Figure 40: Abstract Service Description Schema of the Service Registry 

Figure 39 shows the abstract class diagram for the Service Registry that shows composition 
relationship between its classes. The Catalog of the Service Registry can have zero or more 
services, each Service has zero or more APIs and each API has exactly one Spec. Figure 
40 further shows the abstract schema for the Service object. The API Spec is obtained from 
an API Spec document. This API Spec document needs to conform to one of the following 
standards in order to ensure uniformity across and completeness of API specifications: 

• For synchronous (request-response) services: OpenAPI/Swagger Spec7 

• For asynchronous (publish-subscribe) services: AsyncAPI Spec8 

Thus, this design makes the schema capable of managing metadata for synchronous 
(request-response) as well as asynchronous (publish-subscribe) type of services. All the 
technical metadata for the APIs of services that is needed for creating the Integration Flows 
can be obtained from these API Spec documents.  

The ‘type’ could be used to categorise the services by giving a ‘type’ to them based on the 
functionality they offer. In addition, any additional functional metadata related to the services 
or the individual APIs can be stored in the respective ‘meta’ objects as key-value pairs. Thus, 
the basic schema can be extended to include additional metadata for the entire service or 
for a specific API.  

 
7 OpenAPI/Swagger Spec: https://swagger.io/docs/specification/about/  
8 AsyncAPI Spec: https://www.asyncapi.com/  

http://www.efpf.org/
https://swagger.io/docs/specification/about/
https://www.asyncapi.com/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 49 / 191 

 

Figure 41: Architecture of the Service Registry 

Figure 41 shows the conceptual components of the Service Registry and a REST API. The 
RESTful API provides an endpoint for the lifecycle management of services and another 
‘Service Filtering’ endpoint for supporting service discovery. The Service Registry also has 
a Pub Sub API for publishing service status announcements over predefined topics to the 
Data Spine’s Message Bus. The topic names and URL of the Message Bus can be 
configured using the Configuration Loader component. 

In this way, the design of the Service Registry has been kept simple yet effective, so that it 
could either be realised with any suitable open source service registries or developed 
entirely from scratch easily while also providing the intended core functionality. 

2.1.4 Message Bus 

Some of the platforms in the EFPF ecosystem, interconnected through the Data Spine, offer 
their shop floor data as data streams through their factory connectors/gateways and some 
tools in the EFPF platform also make use of the publish-subscribe communication pattern. 
The Integration Flow Engine of the Data Spine supports such asynchronous communication 
as well. In addition, the Data Spine offers the Message Bus component to the publishers 
and/or the subscribers in these platforms. The Message Bus supports standard publish-
subscribe based messaging protocols such as MQTT, AMQP, etc. that are widely used in 
the industry. The Message Bus in EFPF could be extended to add support for new protocols 
via plugin mechanism. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 50 / 191 

 

Figure 42: Architecture of the Message Bus 

Figure 42 shows the conceptual components of the Message Bus. At the core of the 
Message Bus is the ‘PubSub Service’. The PubSub Service provides a Pub/Sub API. The 
published messages are accepted by the PubSub Service and these messages are stored 
in queues/buffers provided by the Message Bus until they are forwarded to the designated 
subscribers. The Message Bus is capable of having multiple topics/channels and also sub-
topics over which multiple publishers can publishers can publish messages and each 
topic/sub-topic can have multiple subscribers. In addition, the Message Bus also has an 
Identity and Access Management component so that the identities of the publishers and 
subscribers can be verified and their publications and subscriptions can be access 
controlled. The Message Bus supports use of username-password based as well as key 
based authentication. Finally, the Message Bus provides interfaces for user and topic 
administration, management and monitoring which could be HTTP APIs or GUIs or even 
CLIs. 

2.1.5 EFPF Security Portal 

One of the core requirements of the EFPF platform is to establish a federation of digital 
manufacturing platforms and enable interoperation between them, using a federated identity 
management model. To implement federated identity mechanisms, the EFPF platform 
requires the EFPF Security (EFS) portal in order to govern the security management 
controls of different platforms in the platform ecosystem. The EFS should be designed and 
implemented as a distributed single point of trust that enables a class of Super Administrator 
whose role is to provide secure authentication of any tenant platform in the ecosystem (e.g. 
multi identities to be managed across company’s accounts). 

With respect to access control mechanisms for the IoT and the cloud, traditional Role Based 
Access Control (RBAC) has shown serious weaknesses, e.g. confused deputy attacks 
through inherited permissions (the user with higher permissions grants access to a specific 
resource to a user with lower permissions). As an alternative to RBAC, the Attribute Based 
Access Control (ABAC) model provides fine-grained access mechanisms, in which the 
authorization decisions are based on attributes that need to be proven by the user (location, 
roles, etc.) and on other properties (e.g. resource properties). 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 51 / 191 

Figure 43 illustrates a cross-platform user identity and access control management through 
the EFS [SJDB19]. 

 

 
Figure 43: Cross-platform user identity and access management via EFS 

The EFPF platform and its Data Spine integration middleware, should act as the federation 
provider that governs identity federation and user provisioning workflows across the EFPF 
ecosystem. The Data Spine integration middleware includes the EFS as a component (see 
Figure 1). Apart from the federated IDM, EFS implements other security controls. 

Figure 44 illustrates a high level EFS perspective of the integration of four base platforms 
within EFPF. Each base platform contains its own IDP that maintains the platform’s users, 
their roles and access policies. Practically the core requirement is that the Data Spine, 
through EFS, enables federation of the users of base platforms across the platform 
ecosystem in EFPF. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 52 / 191 

  
Figure 44: High-level Design of the EFPF Federation 

Another design goal in EFPF is to accommodate not only four base platforms, but external 
platforms that will provide further collaborative manufacturing services. With such a design 
requirement, one-to-one user federation mappings between platforms will result in a high 
number of login options for individual platforms (e.g. login to platform A, B, C, ..., N), which 
will require continuous updates of the authentication and authorization workflows for each 
platform in the ecosystem that is rather, not feasible. 

Therefore, the Data Spine and EFS take on the role of the central federation provider to 
manage all federation workflows across platforms participating in the ecosystem. The EFS 
also acts as the gateway enabling the access to the collaborative manufacturing resources 
provided by the platforms in the ecosystem. 

2.1.6 The Data Spine 

 

Figure 45: Architecture of the Data Spine 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 53 / 191 

Figure 45 shows the conceptual components of the Data Spine discussed in the sections 
above as the core components of the Data Spine. The relationships and interactions 
between these core components are also illustrated. The access to the GUI of the 
Integration Flow Engine and its elements is protected by the ‘Keycloak’ component of the 
EFS. The API Security Gateway acts as the Policy Enforcement Point for the Data Spine. 
API Security Gateway relies on the Policy Enforcement Service of the EFS to make the 
access control related decisions. The API Security Gateway is configured to check the 
Service Registry for new service registrations and service updates periodically to 
automatically create proxy endpoints or routes for protecting access to them in the API 
Security Gateway. The access to the REST API of the Service Registry is secured through 
the proxy endpoints in API Security Gateway. The Service Registry publishes service status 
announcement related messages to the Message Bus. The design-time administration and 
management related endpoints of the Integration Flow Engine and the Message Bus are 
secured through the Identity and Access Management services internal to these respective 
components. The run-time access to the endpoints exposed by the Integration Flows in the 
Integration Flow Engine is protected through the corresponding proxy endpoints in the API 
Security Gateway, once they are registered to the Service Registry. 

Moreover, Figure 45 also shows the run-time view of the communication between two 
services S1 and S2 happening through the Data Spine. As design-time prerequisites, 
service S1 is registered in the Service Registry, the Integration Flow to consume S1 and 
perform data transformation has already been created and activated and, finally, service S2 
has acquired access rights for invoking S1 through the Data Spine. The operation at run-
time: 

1. S2 makes a call to the proxy endpoint EP1-c in the API Security Gateway with an EFPF 
token.  

2. The API Security Gateway delegates the authentication and authorization responsibility 
to the EFS. 

3. The EFS verifies whether the token is valid and has necessary authorization to invoke 
the EP1-c endpoint and perform the specified operation and finally, replies to the API 
Security Gateway. 

4. Upon receiving a positive reply from the EFS, the API Security Gateway invokes the 
corresponding endpoint EP1-b exposed by the respective Integration Flow in the 
Integration Flow Engine. 

5. The Integration Flow transforms the request, if specified and invokes the original EP1-a 
endpoint of S1. 

6. Upon receiving response from S1, the Integration Flow transforms the response payload, 
if specified and returns the response to the API Security Gateway. 

7. The API Security Gateway returns the response to S2. 

In this way, the components of the Data Spine work together to enable integration of and 
communication between the services of different platforms. 

 Realisation of Interoperable Data Spine 

This section details the process of implementation of the Data Spine based on the design 
aspects and requirements identified in Section 2.1 and, presents and elaborates the open 
source platforms, services and tools chosen to realise these conceptual components of the 
Data Spine. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 54 / 191 

In order to realise the conceptual components of the Data Spine, available permissive open 
source technological platforms and frameworks were surveyed. The surveyed platforms 
included Apache NiFi, WSO2 Integration Agile Platform, FIWARE, Symphony BMS, Apache 
Camel along with the platforms based on it such as Talend ESB and Red Hat Fuse, 
LinkSmart Platform, Apache Flink, Confluent Platform, etc. The factors considered for the 
survey were Platform, License, Language, Plugin/Extension Mechanism, 
Supported Languages for Plugins, Hot Plugin Deployment, REST/API Management, 
Reverse Proxy Support, Identity and Access Management, Type, Message Bus and 
Relation to Data Spine Conceptual Component. The results of the survey are included in 
Annex D of D3.1. 

The surveyed platforms could be broadly classified into three different categories: 

• Lean Frameworks or Code Libraries such as Apache Camel, Apache Synapse, etc. 
that offer no GUI to create Integration Flows graphically. 

• Lightweight Dataflow Centric Platforms such as Apache NiFi that offer service 
integration capabilities such as connectivity, routing, data transformation, mediation, 
etc. and a Web-based intuitive GUI to collaboratively create Integration Flows. 

• Heavy-weight Integration Suites or Enterprise Service Buses such as WSO2, Talend 
ESB, etc. that, along with the integration capabilities mentioned above, also provide 
other functionalities such as Business Process Management Rule Engine, Activity 
Monitoring, Security Compliance and Repositories, etc. built it into a single solution.  

Based on the design requirements identified in Section 2.1, the platforms in categories 2 
and 3 above were found to be the most suitable for realising the components of the Data 
Spine. From these 2 categories, as stated in D3.1, the survey resulted into the identification 
of two possible solutions:  

• WSO2 Carbon Infrastructure Stack to realise all the components of the Data Spine 
and, 

• Apache NiFi to realise the Integration Flow Engine of Data Spine with other 
components such as LinkSmart Service Catalog or Consul, Keycloak, RabbitMQ, etc. 
to realise the other components of Data Spine.  

Finally, based on the experimental evaluation for quality assessment of Apache NiFi and 
WSO2 Platform with focus on WSO2 EI, the solution 2 above was selected to realise the 
components of the Data Spine. The details of this experimental evaluation can be found in 
D3.1. The subsequent sections introduce the technological platform, tool or service chosen 
to realise that particular component of the Data Spine and elaborate its design and 
technological aspects such as architecture, interfaces, configuration, operation, etc. 

2.2.1 Integration Flow Engine 

As stated in Section 2.2.6, Apache NiFi was selected to be the Integration Flow Engine of 
the Data Spine. Apache NiFi is a Dataflow Management Platform based on the concepts of 
Flow-based programming. It automates the flow of information between systems through 
directed graphs called dataflows. The dataflows support communication, data routing, data 
transformation and system mediation logic with the help of ‘processors’ as their vertices.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 55 / 191 

 

Figure 46: Apache NiFi GUI Elements 

 

The processors are responsible for handling data ingress, egress, routing, mediation and 
transformation. The edges that connect these processors with each other are called 
‘Connections’. Apache NiFi offers a Web-based, highly configurable, drag-and-drop style 
GUI for creating such dataflows. Figure 46 highlights the elements of NiFi’s GUI and also 
shows a sample dataflow. NiFi’s GUI offers a functionality to search for a particular 
processor and view its short description to include it in a dataflow as shown in Figure 47. 
NiFi contains as many as 284 different processors as of version 1.11.3. In the context of 
Data Spine, the Integration Flows translate to dataflows in NiFi. Henceforth, dataflows would 
be referred to as Integration Flows in this document. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 56 / 191 

 

Figure 47: Apache NiFi Processors 

Apache NiFi’s conformity to the fundamental design requirements for Integration Flow 
Engine identified in Section 2.1.1 is discussed below: 

• License: Apache NiFi comes with Apache License v2.0. 

• Usability: Apache NiFi provides an intuitive, drag-and-drop style GUI to the developers 
to create the Integration Flows with minimal effort. The collaboration of work 
concerning a particular Integration Flow among different developers is easy to manage 
as NiFi provides a Web-based GUI for creating Integration Flows and a Multi-tenant 
authorization capability that enables different groups of users to command, control, 
and observe different parts of the dataflow, with different levels of authorization. 
Therefore, NiFi was found to be in compliance of the requirements of usability, 
developer productivity and ease of collaboration. 

• Built-in Protocol Connectors: NiFi provides connectors for standard communication 
protocols such as HTTP, MQTT, AMQP, etc. that are widely used in the industry. In 
addition, it provides processors for directly connecting with widely used industrial grade 
systems such as Apache Kafka, MongoDB, Elasticsearch, AWS DynamoDB, AWS S3, 
etc. 

• Built-in Data Transformation Processors: NiFi primarily provides three data 
transformation processors: JoltTransformJSON, TransformXml and ExecuteScript. 
These include TransformXml processor that supports transformations with XSLT which 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 57 / 191 

is a WC3 standard, a Turing complete language for transformations and widely known 
in the industry. But XSLT has a steeper learning curve. Whereas, JoltTransformJSON, 
a processor which uses Jolt transformation rules to transform one JSON data model 
to another JSON data model, is easier to learn, but not Turing complete. Apart from 
these two processors, NiFi also offers ExecuteScript processor that facilitates users in 
writing a script for performing data transformation. More information on the Data 
Transformation Processors can be found in Section 4.3. 

• Extensibility: NiFi is at its core built with extensibility in consideration. Points of 
extension include: Processors, Controller Services, Reporting Tasks, Prioritizers, and 
Customer User Interfaces. For example, it is possible to write a custom processor for 
NiFi in order to connect to an OPC-UA server (based on OPC-UA Java Stack) and 
read the data. 

• Performance and scalability: NiFi was observed to work seamlessly with resource 
allocation of 8GB RAM and 2 CPU cores. NiFi is also able to operate within a cluster. 

• Identity and access management: NiFi supports a pluggable OpenID Connect based 
authentication provider such as Keycloak. Alternatively, NiFi also supports user 
authentication via client certificates, via username/password with pluggable Login 
Identity Provider options for Lightweight Directory Access Protocol (LDAP) and 
Kerberos or via Apache Knox. 

• Component integration effort: NiFi provides connectors for integration with external 
components. E.g., for integration with Kafka, NiFi has 20 built-in processors. 
Integration of NiFi with REST APIs of other components such as EFS was done with 
minimal effort. 

• Maintainability and Documentation: NiFi’s GUI is very simple, intuitive, drag-and-
drop style and easy to manage. NiFi has a comprehensive documentation that covers 
different aspects of the Platform and different perspectives. NiFi has a Getting Started 
Guide, a User Guide, an Expression Language Guide, RecordPath Guide, 
Administrator’s Guide, a Developer’s Guide, In Depth Guide and also the 
documentation of its REST API. NiFi has a strong community and has frequent source 
code releases. 

Thus, Apache NiFi complies with the foundational design requirements identified for the 
Integration Flow Engine of the Data Spine. 

Some other additional key features of NiFi include: 

• Flow Management 

• NiFi supports guaranteed delivery with the help of persistent write-ahead log and 
content repository, even at a very high scale. 

• The Connection queues of NiFi support data buffering and can be configured to 
apply back pressure upon reaching a certain limit or can age off data. 

• NiFi supports prioritized queuing where data can be retrieved from queues based 
on various strategies such as oldest first, newest first, largest first, or some other 
custom scheme. 

• NiFi supports Flow Specific QoS i.e. it can be configured to prefer low latency vs 
high throughput or loss tolerant vs guaranteed delivery. 

• Ease of Use 

• Apart from the easy to use drag-and-drop style GUI, NiFi also supports visual 
command, control and debugging where parts of the Integration Flow can be 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 58 / 191 

stopped at runtime and queues can be examined. Also, changes can be made to 
any Integration Flow at real-time and those changes immediately take effect. 

• Visually created Integration Flows in NiFi are represented as XML documents in 
the backend. NiFi supports download-upload of these XML Integration Flows and 
also saving them as templates – thereby enabling reuse and collaboration. 

• Data Provenance 

• Data supports automatic recording of provenance of data related to the Integration 
Flows – a feature that would prove to be very useful in Production Environments 
for debugging, finding out the history of changes to a particular Integration Flow 
for troubleshooting and for ensuring compliance. 

• Flexible Scaling Model 

• Scale-out (Clustering): NiFi supports scaling-out though the use of clustering.  

• Scale-up and down: NiFi also be scaled-up and down in a flexible manner. To 
handle increasing throughput, the processors in an Integration Flow can be 
configured to increase the number of concurrent processors. 

Thus, Apache NiFi was found to be a suitable candidate to realise the Integration Flow 
Engine of the Data Spine. 

 Architecture and Interfaces 

 

Figure 48: Architecture of Apache NiFi [NOG20] 

Figure 48 shows the primary internal components of Apache NiFi. NiFi executes inside a 
JVM on the host operating system. The Web Server component hosts NiFi’s RESTful HTTP-
based command and control API. The Flow Controller is the central component that 
manages the execution of processors and extensions. It provides threads for the execution 
of processors and handles their scheduling when the processors or extensions receive 
resources to execute. As discussed before, NiFi supports custom extensions. These 
extensions also run within the same JVM as the in-built components of NiFi. NiFi has three 
different types of repositories for storing different types of data. The FlowFile Repository 
captures the runtime state of NiFi where it stores the metadata state of its FlowFiles at a 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 59 / 191 

given time. FlowFile is the data serialization format used by NiFi. The FlowFile Repository 
implementation instance is pluggable and it uses Write-Ahead Log located on a specified 
disk partition. The Content Repository stores the actual contents of a given FlowFile. The 
Content Repository construct is also pluggable. Finally, the Provenance Repository stores 
provenance data for all the events and actions. The implementation of Provenance 
Repository is pluggable as well. The event data stored in the Provenance Repository is 
indexed and searchable. 

 

Figure 49: Apache NiFi Cluster 

NiFi also supports scaling-out though the use of clustering. Figure 49 shows the operation 
of NiFi within a cluster. NiFi employs a Zero-Master Clustering Paradigm. Every node in a 
particular cluster of NiFi perform the same operation on data but operate on different sets of 
data. Apache ZooKeeper is used for leader election. It elects a NiFi node as a Cluster 
Coordinator. All other nodes report heartbeat and status information to this Cluster 
Coordinator. Thus, Cluster Coordinator handles joining and leaving of nodes. When a 
Cluster Coordinator fails, ZooKeeper automatically elects another node as a new Cluster 
Coordinator. The GUI of any node can be used to manage the cluster and any changes 
made to a particular node are automatically replicated across the cluster. 

NiFi offers a RESTful HTTP-based API [NAR20] that provides a functionality to 
programmatically send commands to control a NiFi instance at runtime. The API provides 
endpoints for lifecycle management of Integration Flows, processors, Process Groups, 
users, access policies, templates, etc. The API also provides User authentication and token 
endpoints e.g., to authenticate a request through the plugged OpenId Connect provider. 
Moreover, the API offers control endpoints that can be used e.g., to start and stop 
processors at real-time; debugging endpoints that can be used to monitor queues, query 
provenance data, etc. 

 Configuration 

In order for two heterogeneous services to be able to communicate, they must be integrated 
and interoperated though the Data Spine first which is accomplished with the help of 
Integration Flows. The Integration Flow Engine needs to be configured for allowing its usage 
and facilitating collaboration among system integrator users who create the Integration 
Flows. Such design-time aspects and prerequisites to the run-time operation of Integration 
Flows are discussed in this section. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 60 / 191 

Securing a NiFi Instance: 

In order to setup a secure instance of NiFi, an SSL certificate, a keystore, a truststore, etc. 
need to be setup at first. To automatically generate the required certificate, keystores, 
truststore, and relevant configuration files, a tls-toolkit [NTT20] command line utility provided 
by NiFi can be used. The tls-toolkit also alters nifi.properties file to set 
nifi.web.https.port=9443 and remove nifi.web.http.port=8080. Once this 

configuration is done, NiFi’s GUI becomes accessible over https. The tls-toolkit is especially 
useful for securing multiple NiFi nodes. 

User Authentication: 

Users using NiFi’s Web-based GUI to create Integration Flows need to be authenticated 
first. NiFi supports user authentication via client certificates using 2-way SSL, via 
username/password with Login Identity Providers such as LDAP and Kerberos, via Apache 
Knox, or via OpenID Connect (OIDC). NiFi can be configured to use one of these at a given 
time. In EFPF, NiFi’s GUI is secured using EFS’s Identity Provider via OIDC. To enable user 
authenticated via OIDC, the properties as shown in Figure 50 are configured in 
nifi.properties file. 

# OpenId Connect SSO Properties # 
nifi.security.user.oidc.discovery.url=http://localhost:9090/auth/realms/master/.well-
known/openid-configuration 
nifi.security.user.oidc.connect.timeout=100 secs 
nifi.security.user.oidc.read.timeout=5 secs 
nifi.security.user.oidc.client.id=nifi-client 
nifi.security.user.oidc.client.secret=c73d0448-e53c-4c92-a31e-8545f2b0868e 
nifi.security.user.oidc.preferred.jwsalgorithm=RS256 
 

Figure 50: NiFi OIDC Properties Configuration 

After this configuration, NiFi would redirect to EFS’s Identity Provider i.e. Keycloak for login 
and after a successful login display 'Insufficient Permissions' error as access policies for 
logged in users still need to be configured. Thus, NiFi is able to use the same user-base 
from EFS and user lifecycle management can take place at a single place i.e. EFS. 

Multi-Tenant Authorization: 

NiFi’s Web-based GUI is intended to be used by multiple users for creating Integration 
Flows. The access and visibility of such Integration Flows needs to be restricted to their 
creators only and, restricted and hidden from the other users. Furthermore, user 
collaboration over an Integration Flow or a Process Group containing several Integration 
Flows needs to be facilitated. This requires not only configuring who has access to the 
Process Groups but also the level of their access. NiFi provides this functionality through it 
‘Multi-Tenant Authorization’ policy governance framework. The Multi-Tenant Authorization 
enables multiple groups of users to collaboratively view, control and manipulate different 
parts of the Integration Flows, with different levels of authorization. Thus, when a logged in 
user attempts to view or update a particular resource through NiFi’s GUI, NiFi, based on the 
configured privileges for the user allows or denies that particular action. To define such 
privileges for individual users or user groups, the access policies need to be defined. 

For Data Spine, two different user roles would be defined in the EFS: DS-Admin and DS-
User. These would be mapped to user groups in NiFi named ‘DS-Admins’ and ‘DS-Users’ 
respectively. Upon login to NiFi through EFS, with no user accounts in NiFi (and hence with 
no Authorization policies defined), 'Insufficient Permissions' message is displayed. 
Thus, the First User ('Initial User Identity') and access policies for that user need to be hard-

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 61 / 191 

coded into the config files of NiFi. The access policies for the users belonging to the DS-
Admins group are then configured by this First User enabling them to configure access 
policies for DS-Users. In EFPF, the access policies for these user roles/groups need to be 
defined at three different levels: 

• Global Access Policies: The Global Access Policies define privileges for uses that are 
applicable system-wide. Figure 51 shows the Global Access Policies defined for NiFi in 
the EFPF Project. 

Role (Group) Policy Privilege 

DS-Admin  
(Group: 

DS-Admins) 

DS-User 
(Group:  

DS-Users) 

View Modify View Modify 

Y NA Y NA view the UI Allow users to view the UI 

Y Y Y Y access the 
controller 

Allows users to view/modify the controller 
including Reporting Tasks, Controller 
Services, Parameter Contexts and Nodes 
in the Cluster 

Y Y Y Y access 
parameter 
contexts 

Allows users to view/modify Parameter 
Contexts. Access to Parameter Contexts 
are inherited from the "access the 
controller" policies unless overridden. 

Y Y N N query 
provenance 

Allows users to submit a Provenance 
Search and request Event Lineage 

Y Y Y TBD access 
restricted 
components 

Allows users to create/modify restricted 
components assuming other permissions 
are sufficient. The restricted components 
may indicate which specific permissions 
are required. Permissions can be granted 
for specific restrictions or be granted 
regardless of restrictions. If permission is 
granted regardless of restrictions, the 
user can create/modify all restricted 
components. 

Y Y N N access all 
policies 

Allows users to view/modify the policies 
for all components 

Y Y Y N access 
users/user 
groups 

Allows users to view/modify the users and 
user groups 

Y Y TBD NA retrieve site-
to-site 
details 

Allows other NiFi instances to retrieve 
Site-To-Site details 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 62 / 191 

Y Y N NA view system 
diagnostics 

Allows users to view System Diagnostics 

Y Y N N proxy user 
requests 

Allows proxy machines to send requests 
on the behalf of others 

Y Y TBD TBD access 
counters 

Allows users to view/modify Counters 

Figure 51: NiFi Global Access Policies 

• Component-level Access Policies for the Root Process Group ('NiFi Flow'): These 
policies define privileges for uses that are applicable to the Root Process Group of NiFi 
and the components (Process Groups, Integration Flows, processors, etc.) present in it. 
Figure 52 shows the Component-level Access Policies for the Root Process Group 'NiFi 
Flow' in the EFPF Project. 

DS-Admin  
(Group: 

DS-
Admins) 

DS-User 
(Group: 

DS-
Users) 

Policy Privilege 

Y N view the 
component 

Allows users to view component configuration 
details 

Y N modify the 
component 

Allows users to modify component configuration 
details 

Y N operate the 
component 

Allows users to operate components by 
changing component run status 
(start/stop/enable/disable), remote port 
transmission status, or terminating processor 
threads 

Y N view 
provenance 

Allows users to view provenance events 
generated by this component 

Y N view the 
data 

Allows users to view metadata and content for 
this component in flowfile queues in outbound 
connections and through provenance events 

Y N modify the 
data 

Allows users to empty flowfile queues in 
outbound connections and submit replays 
through provenance events 

Y N view the 
policies 

Allows users to view the list of users who can 
view/modify a component 

Y N modify the 
policies 

Allows users to modify the list of users who can 
view/modify a component 

Y N receive 
data via 
site-to-site 

Allows a port to receive data from NiFi instances 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 63 / 191 

Y N send data 
via site-to-
site 

Allows a port to send data from NiFi instances 

Figure 52: Component-level Access Policies for the Root Process Group ('NiFi Flow') 

• Component-level Access Policies for a particular component (Process Group) 
PG_X: These policies define privileges for uses that are applicable to that particular 
component (Process Group, Template, etc.). Figure 53 shows the recommended 
component-level access policies to be configured by the Component-Owner. These can 
be customized based on requirements by the Component-Owner. When a new System 
Integrator user in EFPF wants to create Integration Flows in NiFi, DS-Admin creates a 
new component 'PG_X' for his/her company/project and grants him/her 'admin' level 
privileges for PG_X and he/she are regarded as the component-owner for PG_X. The 
component-owner can then grant permissions for PG_X to others (e.g. by creating a user 
groups such as 'PG_X-Admins', 'PG_X-Users', etc.). 

Component-
Owner  
for PG_X 
User-Group: 
PG_X-
Owners 

Component-
User  
for PG_X 
User-Group: 
PG_X-Users 

Policy Privilege 

Y Y view the 
component 

Allows users to view component 
configuration details 

Y Y modify the 
component 

Allows users to modify component 
configuration details 

Y Y/N operate the 
component 

Allows users to operate components by 
changing component run status 
(start/stop/enable/disable), remote port 
transmission status, or terminating 
processor threads 

Y Y/N view 
provenance 

Allows users to view provenance events 
generated by this component 

Y Y view the 
data 

Allows users to view metadata and content 
for this component in flowfile queues in 
outbound connections and through 
provenance events 

Y Y/N modify the 
data 

Allows users to empty flowfile queues in 
outbound connections and submit replays 
through provenance events 

Y Y/N view the 
policies 

Allows users to view the list of users who can 
view/modify a component 

Y Y/N modify the 
policies 

Allows users to modify the list of users who 
can view/modify a component 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 64 / 191 

Y TBD receive 
data via 
site-to-site 

Allows a port to receive data from NiFi 
instances 

Y TBD send data 
via site-to-
site 

Allows a port to send data from NiFi 
instances 

Figure 53: Component-level Access Policies for a particular component (Process Group) 
PG_X 

Figure 54 illustrates an example of NiFi’s Multi-Tenant Authorization. The users ‘admin’ and 
‘user1’ have roles DS-Admin and DS-User respectively and user1 is the Component-Owner 
for the Process Group ‘ProjectA’. Therefore, only ProjectA component is visible and 
accessible to user1 and not other Process Groups and processors and not even some of 
the GUI elements. 

 

Figure 54: NiFi Multi-Tenant Authorization 

This completes the Multi-Tenant Authorization of NiFi and its GUI can be used to create and 
execute Integration Flows. 

Securing Integration Flow API Endpoints 

The Integration Flows often expose new endpoints which are proxy or interoperability-proxy9 
endpoints for external services and access to these endpoints needs to be secured. As 
shown in Figure 55, the access to these endpoints is secured with the API Security Gateway. 
When these endpoints are registered in the Service Registry, the API Security Gateway 
automatically creates proxy endpoints for these endpoints and the service consumers are 

 
9 same data is made available over a new endpoint/topic but adhering to a different data model (and/or 
format) and/or over different protocol 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 65 / 191 

required to invoke these proxy endpoints in API Security Gateway instead. This completes 
the security integration of Data Spine’s Integration Flow Engine – Apache NiFi. 

 

Figure 55: Data Spine NiFi Security Integration 

The design-time configuration of Data Spine Integration Flow Engine’s instance NiFi is 
now complete. 

 Operation 

Figure 56 shows a basic Integration Flow that provides an interoperability-proxy endpoint 
for an external endpoint. All the processors can be started with selecting them and pressing 

start (▷) button on Operate Palette. The HandleHTTPRequest processor Starts an HTTP 

Server and listens for HTTP Requests. Once it receives a request, it creates a FlowFile and 
forwards it to ‘success’ relationship whose other end is connected with the InvokeHTTP 
processor. This processor invokes the preconfigured external endpoint and if it receives a 
response, it forwards it to Jolt Data Transformation Processor which does the data 
transformation and delegates the outcome to HandleHttpResponse processor which returns 
the response to the caller, else to HandleHttpResponse processor which returns the 
response/error to the caller.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 66 / 191 

 

Figure 56: Integration Flow Example 

2.2.2 API Security Gateway 

The API service security is handled by the API Security Gateway (ASG). The ASG acts as 
a border gateway ahead of all API calls to the Data Spine. Its role is to enforce security 
policies on the service calls. In EFPF, ASG is implemented using Apache APISIX, which is 
a technology solution selected due to its features:   

● Speed: As the ASG will proxy calls from Data Spine to other platforms in the 
ecosystem, the latency for the calls should be minimized; 

● Custom plugins: The ASG should depend on minimal code/configuration for the 
development of custom security plugins; 

● License: A permissive license is preferred (Apache / MIT) for the implementation of 
the ASG; and 

● MQTT support 

Figure 57 compares core features of Apache APISIX and Kong 2.0 Open Source API 
Gateway [KON20]. 

Features Apache APISIX Kong 2.0 

Technology Nginx, etcd (for service 
discovery) 

Nginx, Postgres 

Latency 0.2 ms 2 ms 

Plugin setup Minimal effort Multiple file changes 

Plugin hot-loading Yes No 

MQTT support Yes No 

License Apache 2.0 Apache 2.0 

Figure 57: Comparison of Apache APISIX and Kong 2.0 API Gateways 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 67 / 191 

Due to the above advantages the ASG in EFPF is implemented using Apache APISIX, which 
is an effort currently undergoing incubation at the Apache Software Foundation (ASF) (for 
more details: https://github.com/apache/incubator-apisix#apisix). APISIX is a cloud-based 
microservices API gateway that delivers the ultimate performance, security, open source 
and scalable platform for APIs and microservices. It can be used as a traffic entrance to 
process all business data, including dynamic routing, dynamic upstream, dynamic 
certificates, A/B testing, canary release, blue-green deployment, limit rate, defence against 
malicious attacks, metrics, monitoring alarms, service observability, service governance, 
etc. Compared with the traditional API gateways, APISIX has dynamic routing and plug-in 
hot loading, which is especially suitable for API management under microservice systems. 

 Architecture and Interfaces 

Figure 58 shows the workflow diagram of the API Security Gateway. 

 

Figure 58: General Communication Workflow involving the API Security Gateway 

Figure 58 shows the basic communication workflow around the ASG (note, ASG is 
represented by the API Gateway (blue box) in the figure). 

The ASG automatically creates the routes for services that are based on the Service 
Registry from the Data Spine (note, the Data Spine is represented by the Resource 
Server/NiFi (blue box) in the figure). Any routes which are not exposed to the ASG will result 
in a 404 response (“Not found”).  

The ASG has two custom plugins for security enforcement, Open ID Connect plugin and 
Policy Enforcement plugin dealing with the corresponding services.  

The Open ID Connect plugin: provides token introspection. The token introspection can 
be done either through communicating with the identity server or importing the public key of 
the token. This plugin verifies if the token is generated from the EFPF identity server and 
does basic authorization via JSON web token scopes. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 68 / 191 

The Policy Enforcement plugin: provides additional security for the routes defined by the 
ASG. The identity server allows to define policies based on the user’s role or user’s 
attributes. This plugin communicates with the policy engine to allow or reject the call based 
on user’s privileges. 

 Configuration 

The configuration of the API Security Gateway involves three main steps. 

1. Configure connecting with Service Registry: Service registry contains the 
services registered in the EFPF platform. The API Gateway performs a periodic 
scanning of the services to create routes to the services. 

2. Configure Open ID connect Plugin: Open ID connect plugins perform 
introspection of the EFPF token. The ASG should be configured to communicate 
with the EFPF identity server to validate the tokens in each API call. 

3. Configure Policy Enforcement Plugin: This is a complementary plugin for the 
Identity Server to enforce policies to routes exposed via the API Gateway. This 
plugin should be configured by stating the upstream resource of the route and the 
scope of the operation. 

 Operation 

The ASG is available via Docker for cloud native deployments. The ASG comes with the 
admin dashboard to monitor the operations of the ASG. The routes will be automatically 
configured when enabling the connectivity to the service registry. The routes will be 
dynamically modified as and when the service registry is modified with new services. The 
access logs of the ASG can be exported via using the HTTP or Kafka logger to monitor the 
ASG. 

Additionally, securing plugins can be enabled to ensure smooth operation of the ASG, such 
as IP block listing and request rate limiting plugins. 

2.2.3 Service Registry 

LinkSmart Service Catalog [LSC20] was chosen to realise the Service Registry component 
of Data Spine. Service Catalog is the entry point for web services. Its functionality mainly 
covers the lifecycle management of services i.e. the registration, viewing, updating and 
deregistration of services’ metadata. In addition, it supports browsing of the service entries 
in the Catalog and provides a service filtering functionality that can be used by service 
consumers to search services by known capabilities. 

Figure 59 shows the flow of service metadata. Services that register themselves can be 
discovered by other components within or beyond the local network. 

The LinkSmart Service Catalog was enhanced further to fulfil the design requirements for 
Service Registry mentioned in Section 2.1.3. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 69 / 191 

 

Figure 59: LinkSmart Service Catalog 

 Architecture and Interfaces 

The schema of LinkSmart Service Catalog was updated as per the design requirements 
identified in Section 2.1.3. The new schema (see Figure 60) is capable of managing 
metadata for synchronous (request-response) as well as asynchronous (publish-subscribe) 
type of services. The schema can be extended to include additional metadata for the entire 
service or for a specific API. E.g., Figure 61 shows an extended schema for the Service 
Registry to include certain attributes applicable to asynchronous services such as Factory 
Connectors/Gateways. 

{ 
 "id": "string", 
 "type": "string", 
 "title": "string",  
 "description": "string", 
 "meta": {}, 
 "apis": [{ 
  "id": "string", 
  "title": "string", 
  "description": "string", 
  "protocol": "<protocol - e.g., MQTT>", 
  "url": "<base url of the API>", 
  "spec": { 
   "mediaType": "<mediaType type of the API Spec document>", 
   "url": "<url to external API Spec document>", 
   "schema": {} 
  }, 
  "meta": {} 
 }], 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 70 / 191 

 "doc": "string", 
 "ttl": 864000, 
 "created": "2020-06-05T15:46:36.793Z", 
 "updated": "2020-06-05T15:46:36.793Z", 
 "expires": "2020-06-06T15:46:36.793Z" 
} 

Figure 60: Service Description Schema of the Service Registry 

{ 
 "id": "string", 
 "type": "string", 
 "title": "string",  
 "description": "string", 
 "meta": { 
  "async": { 
   "location": { 
    "description": "string", 
    "latitude": "string", 
    "longitude": "string" 
   }, 
   "manufacturer": "string" 
  } 
 } 
 "apis": [{ 
  "id": "string", 
  "title": "string", 
  "description": "string", 
  "protocol": "<protocol - e.g., MQTT>", 
  "url": "<base url of the API>", 
  "spec": { 
   "mediaType": "<mediaType type of the API Spec document>", 
   "url": "<url to external API Spec document>", 
   "schema": {} 
  }, 
  "meta": {} 
 }], 
 "doc": "string", 
 "ttl": 864000, 
 "created": "2020-06-05T15:46:36.793Z", 
 "updated": "2020-06-05T15:46:36.793Z", 
 "expires": "2020-06-06T15:46:36.793Z" 
} 

Figure 61: Extended Service Description Schema of the Service Registry 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 71 / 191 

 

Figure 62: Architecture of LinkSmart Service Catalog 

The Service Catalog, as illustrated in its UML component diagram in Figure 62, provides an 
HTTP REST API for Lifecycle Management and Discovery of Services, an MQTT Service 
Registration/De-registration API through the Data Spine Message Bus and an MQTT 
Service Status Announcements API for also through the Data Spine Message Bus. The 
Service Catalog consumes a JSON configuration file which contains the MQTT configuration 
as described in Section 2.2.3.2. The Service Catalog uses LevelDB on-disk key-value store 
to persist data. Finally, the Service Catalog can optionally consume an authentication 
provider’s interface to secure access to its APIs; however, this wouldn’t be used as access 
to Service Registry’s APIs would be secured through the API Security Gateway and EFS. 
These APIs of the Service Registry are described below. 

HTTP REST API for Lifecycle Management and Discovery of Services: 

Figure 63 provides an insight into the HTTP REST API of Service Registry. As illustrated, 
create, read, update and delete operations can be performed on the Service object in a 
RESTful manner. The service filtering API endpoint enables service filtering based on a 
given path, operator, and value.  

Examples: 

• Filter all services belonging to PlatformX (convention for 'type' followed: <platform-
name>.<service-type>): /type/prefix/PlatformX 

• Filter all services that have MQTT API(s): /apis.protocol/equals/MQTT 

• Filter all services based on address meta field: /meta.address/contains/Bonn 

REST Endpoint HTTP 
Method 

Description 

/ GET Retrieves API index. 

/{id} POST Creates new ‘Service’ object with 
a random UUID (Universally 
Unique IDentifier). 

/{id} GET Retrieves a ‘Service’ object 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 72 / 191 

/{id} PUT Updates the existing ‘Service’ or 
creates a new one (with the 
provided ID) 

/{id} DELETE Deletes the ‘Service’ 

/{jsonpath}/{operator}/{value} GET Service filtering API endpoint 

Figure 63: Service Registry HTTP REST API 

Figure 64 shows the data model of the Service Registry. 

 

Figure 64: Data Model of the Service Registry 

The attributes are described below: 

The Catalog object consists of: 

• id: unique id of the catalog 

• description: a friendly name or description of the service 

• services: an array of Service objects 

• page: the current page in catalog 

• per_page: number of items in each page 

• total: total number of registered services 

A Service object consists of: 

• id: unique id of the service 

• type: type of the service, preferably in the form <platform>.<service-type> 

E.g., “composition.marketplace-service” 

• title: human-readable name of the service 

• description: human-readable description of the service 

• meta: a hash-map for optional meta-information 

• apis: an array of API objects specifying the service’s APIs 

• doc: url to service documentation 

• ttl: time in Seconds after which the service should be removed from the SR, unless it 
is updated within the ttl timeframe. ttl serves as a keepalive mechanism to detect 
failures/unavailability of registered services. I.e., as per the current setting, the 
registered services are obliged to update themselves within the ttl. If they fail to do so, 
they are concluded to be unavailable. The Service Provider based on the availability 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 73 / 191 

requirements of his/her service should determine the most suitable value for the ttl of 
a particular service. 

• createdAt: RFC3339 time of service creation 

• updatedAt: RFC3339 time in which the service was lastly updated 

• expiresAt: RFC3339 time in which the service expires and is removed from the SR 

An API object consists of: 

• id: unique id of the API 

• title: human-readable name of the API 

• description: human-readable description of the API 

• protocol: the communication protocol used by the API (E.g., HTTP, MQTT, etc.) 

• url: A URL to the server/target host (E.g., https://services.example.com,  
tcp://broker.example.com:1883, etc.) as defined by ‘Server Object’ in 
OpenAPI/AsyncAPI specifications 

• spec: the specification of the API as per the Open API Specification (Swagger) 
standard for synchronous (Request-Response) services or the AsyncAPI Specification 
standard for asynchronous (PubSub) services 

• meta: a hash-map for optional meta-information 

A Spec object consists of: 

• mediaType: The media type for the spec url below 

1. For OpenAPI/Swagger Spec: application/vnd.oai.openapi;version=3.0 (YAML 
variant) or application/vnd.oai.openapi+json;version=3.0 (JSON only variant) 

2. For AsyncAPI Spec: application/vnd.aai.asyncapi;version=2.0.0 or  
application/vnd.aai.asyncapi+yaml;version=2.0.0 (YAML variant) or 
application/vnd.aai.asyncapi+json;version=2.0.0 (JSON only variant) 

• url: url to external spec document 

• schema: the JSON object for the spec can be added here in case if the external 
document is not available. In case both are present, the spec in the url takes 
precedence 

 
MQTT Service Registration/De-registration API: 

Service Registry (SR) also supports MQTT for service registration, updates and de-

registration.  

Registration: Service registration is similar to PUT method of REST API. Here, a service 

uses a pre-configured topic defined in the config file (see commonRegTopics and 

regTopics) for publishing the message. 

Example: 

http://www.efpf.org/
https://services.example.com/
https://www.iana.org/assignments/media-types/media-types.xhtml


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 74 / 191 

mosquitto_pub -h localhost -p 1883 -t 'sr/v3/cud/reg/id1' -f 

./service_object.json 

Here, the service_object.json file contains the service (JSON) object. 

Deregistration: The will message of the registered service is used to de-register it from the 

SR. The will topic(s) are defined in the config file (see commonWillTopics and 

willTopics). 

Example: 

mosquitto_pub -h localhost -p 1883 -t 'sr/v3/cud/dereg/id1' –m 'deleting 

service with id: id1' 

MQTT Service Status Announcements API 

Service Registry announces the service registration status via MQTT using retain 

messages.  

The message topics follow following patterns: 

• <topicPrefix>/<service type>/<service_id>/alive: (Retained message) 
The body contains service description of alive service 

• <topicPrefix>/<service type>/<service_id>/dead: (Not retained 
message) The body contains service description of alive service  

The retained messages are removed whenever service de-registers. The ‘topicPrefix’  can 

be configured via the config file. 

Examples: 

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-

spine-service/eb647488-a53b-4223-89ef-63ae2ce826ae/alive' 

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-

spine-service/eb647488-a53b-4223-89ef-63ae2ce826ae/dead' 

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-

spine-service/+/alive' 

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-

spine-service/+/dead' 

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/+/+/alive' 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 75 / 191 

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/+/+/dead' 

 Configuration 

The Service Catalog (SC) consumes a JSON configuration file which is shown in Figure 65.  

{ 
  "description": "string", 
  "dnssdEnabled": "boolean", 
  "storage": { 
    "type": "string", 
    "dsn": "string" 
  }, 
  "http" : { 
    "bindAddr": "string", 
    "bindPort": "int" 
  },  
  "mqtt":{ 
    "client": { 
        "brokerID": "string", 
        "brokerURI":"string", 
        "regTopics": ["string"], 
        "willTopics": ["string"], 
        "qos": "int", 
        "username": "", 
        "password": "" 
    }, 
    "additionalClients": [], 
    "commonRegTopics":  ["string"], 
    "commonWillTopics": ["string"], 
    "topicPrefix": "string" 
  }, 
  "auth": { 
        "enabled": "bool", 
        "provider": "string", 
        "providerURL": "string", 
        "serviceID": "string", 
        "basicEnabled": "bool", 
        "authorization": {} 
    } 
} 

Figure 65: Linksmart Service Catalog Configuration 

The configuration file is primarily used to specify the configuration details of MQTT broker, 
the storage and the optional authentication provider. The attributes are explained below: 

• description is a human-readable description for the SC 

• dnssdEnabled is a flag enabling DNS-SD advertisement of the Catalog on the network 

• storage is the configuration of the storage backend 

• type is the type of the backend (supported backends are memory and levelDB) 

• dsn is the Data Source Name for storage backend (ignored for memory, 
"file:///path/to/ldb" for leveldb) 

• http is the configuration of HTTP API 

• bindAddr is the bind address which the server listens on 

• bindPort is the bind port 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 76 / 191 

• mqtt is the configuration of MQTT API 

• client is the configuration for the main MQTT client 

• brokerID is the service ID of the broker (Optional) 

• brokerURI is the URL of the broker 

• regTopics is an array of topics that the client should subscribe to for 
addition/update of services 

▪ Example: "regTopics": ["topic/reg/+"] 

▪ While publishing a service registration message over this topic, '+' 
should be replaced by id of the service to be added/updated. id 
passed in message payload takes precedence over id in the topic 

▪ E.g., mosquitto_pub -h localhost -p 1883 -t 
'topic/reg/custom_id1' -f ./service_object.json 

• willTopics is an array of will topics that the client should subscribe to for 
removal of services (Optional in case TTL is used for registration) 

▪ Example: "willTopics": ["topic/dereg/+"] 

▪ While publishing a service deregistration message over this topic, 
'+' should be replaced by id of the service to be removed 

▪ E.g., mosquitto_pub -h localhost -p 1883 -t 
'topic/dereg/custom_id1' -m 'something' 

• qos is the MQTT Quality of Service (QoS) for all reg and will topics 

• username is username for MQTT client 

• password is the password for MQTT client 

• additionalClients is an array of additional brokers objects. 

• commonRegTopics is an array of topics that all clients should subscribe to for 
addition/update of services (Optional) 

• Example: same as the example for 'regTopics' above 

• commonWillTopics is an array of will topic that the client should subscribe to for 
removal of services (Optional in case commonRegTopics not used or TTL is used 
for registration) 

• Example: same as the example for 'willTopics' above 

• topicPrefix is the string describing the prefix of service announcement topics 

• auth is the Authentication configuration 

• enabled is a boolean flag enabling/disabling the authentication 

• provider is the name of a supported auth provider 

• providerURL is the URL of the auth provider endpoint 

• serviceID is the ID of the service in the authentication provider (used for validating 
auth tokens provided by the clients) 

• basicEnabled is a boolean flag enabling/disabling the Basic Authentication 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 77 / 191 

• authorization - optional, see authorization configuration 

All configuration fields (except for arrays of objects) can be overridden using environment 
variables. E.g.: SC_STORAGE_TYPE=leveldb 

Having configured the Service Catalog in this way, the next step is to secure access to its 
APIs. To secure the REST API, proxy endpoints are configured for its REST endpoints in 
the API Security Gateway and access policies are defined in the EFS. The access to its 
MQTT APIs is secured by the policies configured in EFS; however, the access is not 
enforced using the API Security Gateway but using the Message Bus itself. The SC 
subscribes to or publishes to the Message Bus using keys that are issued by the Message 
Bus when the corresponding topics are created by calling Message Bus’s HTTP API. The 
service providers who want to register their services by publishing through the MQTT API 
or the users who want to subscribe to the service status announcements need to obtain the 
respective keys by calling Message Bus’s HTTP API through the API Security Gateway. 

 Operation 

When a call is made to an endpoint of Service Catalog’s proxy API in the API Security 
Gateway (ASG) with an EFPF token, the API Security Gateway checks for authentication 
and authorization with the EFS. Upon receiving a positive reply from the EFS, ASG invokes 
the corresponding endpoint of the Service Catalog. The Service Catalog processes the call 
and returns the reply to its caller, the ASG. The ASG then forwards this reply to the original 
caller. 

For registrations through MQTT API, the user/client publishes the service object over the 
preconfigured registration topic to the Message Bus with the given key, the Message Bus 
verifies the key for authentication and authorization and once verified, the message is 
published. The Service Catalog receives this message from the Message Bus, and the 
service is registered. The Service Catalog publishes the service status announcements to 
the Message Bus over the preconfigured topics using the given keys, the users/clients need 
to subscribe to these topics using the keys issued by the Message Bus. 

2.2.4 Message Bus 

RabbitMQ [RMQ20] Message Broker satisfies the design requirements the Data Spine 
Message Bus enlisted in Section 2.1.4. RabbitMQ is a message broker or message-oriented 
middleware that implements AMQP (Advanced Message Queuing Protocol). It is one of the 
most popular and most widely deployed open source message broker. Many partners 
involved in the EFPF project, especially the partners that provide Factory 
Connector/Gateway solutions had first-hand experience with using RabbitMQ and also 
RabbitMQ is being used for supporting asynchronous communication in COMPOSITION 
and SMECluster platforms. Therefore, RabbitMQ was first chosen for experimentation in the 
EFPF project and with a positive first-hand experience, was selected to realise the Message 
Bus. 

Some of the features of RabbitMQ and their significance in EFPF are explored below: 

• Support for protocols 

• In EFPF, we primarily make use of MQTT, MQTTS and AMQP (0-9-1) 

• RabbitMQ supports AMQP inherently and MQTT/MQTTS via a plugin 

• It also supports STOMP, AMQP 1.0, HTTP and WebSockets 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 78 / 191 

• Deployment 

• Docker container has been selected as a deployment unit in EFPF 

• RabbitMQ’s Docker images are made available with each release 

• Management and Monitoring 

• RabbitMQ provides a management GUI and an HTTP-based API for administration, 
management and monitoring of channels/topics, users, dataflow stats, etc. via a 
plugin. 

• In addition, RabbitMQ also provides a management command line tool 
‘rabbitmqadmin’ that can be used in performance critical environments such as 
production as opposed to the GUI. 

• Identity and Access Management 

• RabbitMQ supports multiple SASL (Simple Authentication and Security Layer) 
authentication mechanisms out of which, three are built into the server - PLAIN, 
AMQPLAIN and RABBIT-CR-DEMO and one ‘EXTERNAL’ is supported via a plugin. 
More such authentication mechanisms are supported via plugins. In essence, 
RabbitMQ supports widely used password-based, token-based and client 
certificates based authentication. 

• RabbitMQ also supports multi/tenant authorization with the help of ‘virtual hosts’ 
which enable logical grouping and separation of resources such as connections, 
exchanges, queues, bindings, user permissions, policies, etc. 

• Performance and Scalability 

• RabbitMQ supports clustered deployment for high availability and throughput. 

• Extensibility, Tools & Plugins 

• RabbitMQ’s flexible plug-in-approach supports extension of functionality through the 
use of plugins. 

• It provides official client libraries for many programming languages and also various 
developer tools for supporting frameworks such as the Spring Framework. 

• Documentation 

• The documentation provided by the RabbitMQ developers and community is 
comprehensive and it covers tutorials and guides from installation, setup and usage 
of RabbitMQ to developments of new plugins. 

 Architecture and Interfaces 

RabbitMQ is an implementation of the AMQP protocol. The AMQP 0-9-1 model followed by 
RabbitMQ is shown in Figure 66. The model defines messaging brokers that act as 
middleware, publishers/producers that publish messages to the messaging brokers and 
these messaging brokers route these messages to the consumers/subscribers. The 
messages are published to ‘exchanges’ component of RabbitMQ, the exchanges then route 
the messages to ‘queues’ based on routing rules called ‘bindings’. RabbitMQ then pushes 
these messages in the queues to the subscribers or these messages can even be pulled on 
demand by the subscribes. RabbitMQ also uses message acknowledgments to ensure 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 79 / 191 

reliable exchange of messages over unreliable networks. The subscriber application notifies 
the broker as soon as it receives a message and then only the broker will remove that 
messages from a queue. 

 

Figure 66: AMQP 0-9-1 Model Followed by RabbitMQ [CAQ20] 

The exchanges are of different types. In ‘Direct’ type of exchanges, the message is routed 
to the queue whose binding key exactly matches with the routing key of the message. In 
‘Topic’ type of exchanges, a wildcard match between the routing key of the message and 
the routing pattern specified in the binding is done by the exchange. In ‘Fanout’ type of 
exchange, messages are routed to all of the queues bound to the exchange. In ‘Header’ 
type of exchange, the messages are routed based on message header attributes. The type 
of an exchange is specified when it is created. 

 

Figure 67: RabbitMQ Messaging Patterns [RMP20] 

RabbitMQ supports several messaging patterns as shown in Figure 67. It supports the basic 
asynchronous pattern where it provides a queue to which a publisher can publish a message 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 80 / 191 

and the subscriber can receive it through the broker’s queue. The Work Queues or 
Competing Consumer pattern enables distribution of messages/tasks among several 
consumers/workers. The Publish Subscribe pattern enables the dispatch of messages to 
many consumers at once. The Routing pattern enables the selective routing of messages 
to different queues. The Topic pattern enables routing of messages to different queues 
based on patterns/topics. RabbitMQ also supports the RPC or Request-Response pattern 
that supports call-backs and also the Publisher Confirms pattern to enable reliable 
publishing of messages. 

RabbitMQ offers multiple command line tools that provide CLIs for service management, 
general operator tasks, diagnostics and health checking, plugin-management, maintenance 
tasks on queues and related to upgrades, and, for management and monitoring of RabbitMQ 
nodes and clusters. The primary RabbitMQ CLI tool ‘rabbitmqctl’ provides an interface for 
managing RabbitMQ nodes and clusters. Its CLI supports user management which 
provides commands for adding users, authenticating users, updating passwords, listing 
users, setting user tags, etc. The CLI also supports many other functionalities such as 
access control, monitoring, observability and health checks, management of runtime 
parameters and policies, management of virtual hosts, configuration, etc. 

 

Figure 68: RabbitMQ Management GUI 

RabbitMQ’s Management plugin provides an HTTP API, a Web-based GUI (Figure 68) and 
a CLI for management and monitoring of RabbitMQ nodes and clusters. The CLI is 
provided via a command line tool ‘rabitmqadmin’. rabitmqadmin provides capabilities to list 
exchanges, queues, bindings, vhosts, users, permissions, connections and channels, view 
overview information, declare and delete exchanges, queues, bindings, vhosts, users and 
permissions, publish and get messages from queues, close connections, import and export 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 81 / 191 

configuration, etc. The HTTP API is primarily used for monitoring and alerting purposes. It 
can be used to collect data related to the state of nodes, connections, channels, queues, 
consumers, etc. and aggregate it periodically. These stats can be used for alerting, 
visualization, monitoring, analysis, etc. through the provided GUI or through external 
monitoring systems such as Prometheus and Grafana or ELK stack. The management 
GUI is a single page application that consumes the HTTP API. It is intended to be used for 
monitoring and debugging purposes in development and testing environments. 

 Configuration 

RabbitMQ ships with built-in settings that are most commonly used across applications by 
default. These can be used readily for environments such as Development and Testing 
where performance and fine tuning is not very essential as compared to the functioning. For 
performance and security critical environments such as Production, RabbitMQ provides 
ways through which the broker server and the plugins can be configured. These 
configuration mechanisms for RabbitMQ include configuration files, environment variables, 
command line tools such as rabbitmqctl, rabbitmq-queues, rabbitmq-plugins, rabbitmq-
diagnotics, etc. The compilation of the exact configuration details for RabbitMQ to be used 
in the Production environment of EFPF are work in progress. 

After the initial setup and deployment related configuration is done, some design-time setup 
activities need to be performed which are a prerequisite to RabbitMQ’s operation. RabbitMQ 
supports multi-tenancy through the use of virtual hosts or vhosts. When the RabbitMQ server 
is started for the first time, it realises that the database is uninitialized or has been deleted 
and creates (i) a fresh database, (ii) a default ‘/’ vhost and (iii) a default ‘guest’ user with full 
access to the ‘/’ vhost. For security reasons, by default, the guest user can only operate from 
localhost. New vhosts need to be created or the default ‘/’ vhost can also be used prior to 
the run-time operation. New users that can connect from remote hosts need to be created 
and they need to be given access permissions to specific vhosts for performing specific 
operations. This pre-configuration of a number of vhosts, users and user permissions is 
called ‘seeding’ operation. Such a seeding operation is typically done for production 
environments. This kind of seeding can be done with the help of various command line tools 
provided by RabbitMQ. 

Once these design-time configurations on the broker side are done, the client sides can 
establish connections with it. The clients can make use of client libraries provided by 
RabbitMQ or any other tools to interface with the broker. Every client connection with the 
broker has an associated user and an associated vhost. The user is authenticated by the 
broker and its access permissions for that vhost are examined for authorization. There are 
two primary ways of authentication: username-password and X.509 certificates. RabbitMQ 
enforces access control in a layered fashion. The first layer of authorization checks whether 
the user has access to the specified vhost or not. The second layer is concerned with 
checking user access to resources such as exchanges, queues, etc. and operations to be 
performed on them. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 82 / 191 

 

Figure 69: Design-time Security Configuration for PubSub Workflows 

Figure 69 shows the design-time security configuration that needs to be done in order for 
enabling secure communication and dataflow between the Message Bus and the clients. 
The first step is to obtain a root topic from the EFS. The users with ‘EFPF Connector’ role 
can invoke EFS’s API to get such a root topic for their company and the clients belonging to 
this company need to create sub-topics under this root topic and then create publishers and 
subscribers for such sub-topics. The API Security Gateway provides a proxy API to offer 
these functionalities. Upon receiving such a request, the API Security Gateway and EFS 
check whether the root topic assigned to his/her company matches with the one decoded 
from his/her token. If so, the request is authorised and the requested action is performed. 
The clients this get the keys to publish/subscribe to the topics on the Message Bus. The 
exact API calls and/or the mechanism that will enable this kind of security configuration in 
RabbitMQ is currently being investigated and discussed. 

 Operation 

Once the configuration on both the RabbitMQ side and the clients’ side is done, the 
communication can start. In the case of MQTT, the clients can directly publish and subscribe 
to the intended topics and can exchange data through the broker. In the case of AMQP, a 
few more steps are involved: 

1. A TCP connection is set up between the client application and RabbitMQ where the 
key/credentials, connection URL, port, etc. is specified by the client. 

2. The connection interface is used to create a channel in the TCP connection. Messages 
can now be sent or received through this channel. 

3. A queue is declared or created, if it does not exist. 

4. An exchange is declared and setup. 

5. The exchange is bound to a queue. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 83 / 191 

6. The publisher publishes message to the exchange and the consumer consumes it from 
the queue. 

7. The channel is closed followed by the connection. 

2.2.5 EFPF Security Portal 

In order for the realization of EFS, EFPF uses a combination of micro services and a 
Keycloak identity server. The following lists the main functionalities performed by the EFS. 

● User Management 

● User Federation Service, SSO, Loggers 

● Token Translation Service 

● Policy Enforcement Service 

 Architecture and Interfaces 

User Management 

The user management and authentication is handled by the Keycloak Identity Server. 
Keycloak is an OpenId connect and UMA compliant identity provider. Keycloak also provides 
an Admin API to perform user user management and a fully extensible plugin based 
ecosystem.  

User Federation Service 

To enable user’s login to any of the four base platforms, the user can select one of the two 
procedures for the authorization: 

● Login through a base platform (native users), and 

● Login through the EFPF platform (federated users). 

The platform level interoperability in EFPF can be achieved by following workflows 1 and 2, 
shown in Figure 70 and Figure 71 respectively. Note that both workflows require the user to 
be registered on the EFPF platform. 

Figure 70 illustrates the workflow that follows the bottom up approach for federation. Here, 
the user logins to the base platform using his/her EFPF credentials. The EFPF credentials 
are issued by the EFS and are not propagated to the base platforms. The initial 
representation of the user will be created when the user opts to login with EFPF credentials 
in a base platform. If a user is already present in the base platform then a linked user will be 
created with the existing roles of the base platform. 

The second workflow (Figure 71) enables the user to login to the EFPF platform (via EFS) 
and then visit any base platform in the same browser session, e.g. PLATFORM 1, 
PLATFORM 2, etc. In this approach, the user logins to the base platforms using his/her 
previously provided EFPF credentials. By keeping the common browser session, the EFPF 
user can achieve SSO capability when login to other base platforms. The current 
implementation of the EFPF EFS (with IDS) follows the OpenID based identity method. 
Here, the user who tries to login to the base platform using EFPF credentials, is redirected 
to the EFPF platform (and its EFS) for the validation of his/her credentials. After verifying 
the credentials, the user is redirected to the relevant base platform. Furthermore, the base 
platform identifies the user and provides required roles based on predefined policies. 

 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 84 / 191 

 

Figure 70: Workflow 1: Login to PLATFORM 1 using EFPF platform credentials 

 

Figure 71: Workflow 2: Login to EFPF using EFPF platform credentials, then login to 
PLATFORM 1 and PLATFORM 2 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 85 / 191 

Policy Enforcement Service 

Policy Enforcement Service acts as the first contact point from the API Security Gateway. 
This allows us to enforce policies to services exposed via the Data Spine. EFS allows to 
create 2 types of permissions:  

1. Resource-Based: The permission can be directly applied to a resource created in the 
identity server.  

2. Scope-Based: The permission can be assigned to scopes or scope(s) and resource. 

 

Figure 72: Policy Enforcement Architecture 

Scopes represent a set of rights at a protected resource. Scopes can be resource specific 
or can be shared between multiple resources. The following image shows the architecture 
of the policy enforcement service. 

Token Translation Service 

Base platforms have their internal authentication and authorization mechanisms, and use 
the token generated by their authentication system to allow access. Therefore EFPF users 
cannot access the connected base platforms with the EFPF token generated by EFS. Token 
translation service acts as an intermediary service to obtain a valid access token to external 
API calls. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 86 / 191 

 

Figure 73: Sequence Diagram of the Token Translation Service 

 Configuration 

Identity Server Configuration 

The identity provider is configured to use the Open ID connect based authentication to 
authentication and authorize the users. Trusted clients should be created in the identity 
server for the application to authenticate users and micro services in the ecosystem. In 
addition to authentication the authorization aspect of the identity server. 

SSO Configurations 

A dedicated client should be created in the identity server for each base platform’s SSO 
configurations. The SSO client will have the redirect URL and other Open ID configurations 
such as the Oauth flows supported for the client. By default the identity server supports the 
standard flows. However if the base platform does not have a back end, then the implicit 
flow can be enabled to exchange SSO tokens. 

 Operation 

The components of the EFS are packaged as containerized as a docker-compose solution. 
All the sub components of the EFS are dependent on the Identity Server. Therefore, the rest 
of the EFS components are initiated after the Identity Server runs. The components of the 
EFS are monitored using the access logs and on a periodic basis exported to the Kibana 
log management platform. 

The identity server also provides several functionalities to ensure smooth operation such as 
detection of brute forcing or any suspicious activities. 

2.2.6 The Data Spine 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 87 / 191 

 
Figure 74: Data Spine Realised 

Figure 74 illustrates the technological platforms, tools and services selected to realise 
different components the Data Spine and the interactions between them. The interactions 
are similar to the ones between their respective conceptual components illustrated in Figure 
45 and explained in Section 2.1.6.  The figure also shows Service Provider providing service 
S1 through the Data Spine and Service Consumer’s service S2 consuming S1 through the 
Data Spine with the help of ‘Integration Flow 1’. Finally, Figure 75 summarises the 
technologies selected to realise the conceptual components of the Data Spine. 
In this way, the Data Spine provides the necessary integration infrastructure to bridge the 
interoperability gaps between heterogeneous services and enables communication in the 
EFPF ecosystem. 
 

Conceptual Component Technology 

Integration Flow Engine Apache NiFi 

API Security Gateway APISIX 

Service Registry LinkSmart Service Catalog 

Message Bus RabbitMQ 

EFS Keycloak (& Policy Enforcement Service) 

Figure 75: Technologies Selected to Realise the Data Spine 

 Service Integration through Data Spine 

This section enlists the activities that the service providers need to do in order to provide 
their services through the Data Spine and the activities the service consumers need to do in 
order to consume the services provided through the Data Spine with the help of examples. 
These design-time aspects become the prerequisites to enabling communication through 
the Data Spine. This section is further divided into ‘Synchronous Communication’ and 
‘Asynchronous Communication’ as the activities differ for both.  

• Synchronous Communication: 

Prerequisites:  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 88 / 191 

The service provider ‘provider1’ and service consumer ‘consumer1’ are both EFPF users. 
provider1 and consumer1 have the necessary access permissions required to register 
services to the Service Registry. 

Design-time activities: 

1. provider1 registers his/her service ‘service1’ to the Data Spine Service Registry with an 
appropriate service ‘type’. For simplicity, let us assume that service1 has only one API 
endpoint ‘EP1’. 

2. An EFPF administrator user ‘admin1’ defines/configures the access permissions for 
accessing EP1 in the EFS. 

3. The API Security Gateway (ASG), which checks for new service registrations/updates to 
services in the Service Registry periodically, creates a proxy endpoint/route ‘EP1P’ for 
EP1 in ASG – this could be used to invoke the endpoint directly without creating an 
integration flow in case if protocol translation and/or data transformation isn’t needed 
(here it is assumed that data transformation is needed). 

4. consumer1 discovers service1 and decides to consume it and gets the technical 
metadata for service1 including its API spec from the Service Registry. 

5. consumer1 requests for and acquires the necessary access permissions to invoke EP1. 

6. consumer1 creates an integration flow using the GUI of the Integration Flow Engine to 
invoke EP1, perform data transformation and finally create an ‘interoperability-proxy’ 
endpoint EP1-C for EP1 in the integration flow. 

7. consumer1 registers this new EP1-C endpoint to the Service Registry. 

8. ASG creates a proxy endpoint EP1-CP for EP1-C. 

9. consumer1 requests for and acquires the necessary access permissions to invoke EP1-
CP. 

10. provider1’s service and consumer1’s service are now integrated through the Data Spine 
and can start communicating with each other. 

• Asynchronous Communication: 

Prerequisites:  

The publisher ‘publisher1’ and subscriber ‘subscriber1’ are both EFPF users. publisher1 and 
subscriber1 have the necessary access permissions required to register services to the 
Service Registry.  

Let us assume that publisher1’s entity that publishes/intends to publish to the Data Spine 
Message Bus is ‘fc1’. 

Design-time activities: 

1. If fc1 is a Factory Connector/Gateway (FCG), publisher1 logs in to the EFPF Marketplace 
and purchases this Factory Connector fc1 there; else, step 1 is skipped. 

2. publisher1 gets a root topic name (for publisher1’s company) ‘p1’. 

3. publisher1 logs in to the Factory Connector/Gateway Management Tool (FCGMT) and 
creates a sub-topic ‘topic1’ under p1 to publish to and gets a key ‘pk’ for publishing to 
that topic ‘p1/topic1’. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 89 / 191 

4. publisher1 configures fc1 to publish to Data Spine Message Bus over the topic ‘p1/topic1’ 
using the key pk. 

5. publisher1 registers its service ‘service1’ that consists of this API containing its 
publication information to the Service Registry. 

6. subscriber1 discovers service1’s topic ‘p1/topic1’, decides to subscribe to it and gets the 
technical metadata for service1 including its API spec from the Service Registry. 

7. subscriber1 requests for access permissions to subscribe to p1/topic and gets the key 
pk for the same. 

8. subscriber1 creates an integration flow using the GUI of the Integration Flow Engine to 
subscribe to p1/topic, perform data transformation and finally to publish the resulting data 
to Message Bus over the topic ‘s1/topic1’ using the key sk (‘s1’ is subscriber1’s root topic 
and he/she obtains the same along with the key ‘sk’ following the same procedure as 
publisher1). 

9. subscriber1 registers his/her service with the APIs containing its subscription and 
publication information to the Service Registry. 

10. publisher1’s service and consumer1’s service are now integrated through the Data Spine 
and can start communicating with each other. 

 Dataflow through Data Spine 

This section describes the service-to-service communication that happens at run-time 
through the Data Spine in the form of workflows. In order to enable such a communication, 
the participant services need to be integrated through the Data Spine first by following the 
design-time activities enlisted in Section 2.3. Therefore, in a way, the workflows described 
in this section are a continuation of the activities mentioned in the previous section. This 
section is further divided into ‘Synchronous Communication Workflow’ and ‘Asynchronous 
Communication Workflow’ as the workflows differ for both. 

Synchronous Communication Workflow (Figure 76): 

1. consumer1’s service invokes EP1-CP endpoint/route of ASG. 

2. ASG, acting as a reverse proxy, checks with EFS to ensure that consumer1 has the 
necessary permissions to access EP1-CP and to perform the requested operation. 

3. ASG, upon receiving a positive reply from EFS, invokes EP1-C exposed by the 
integration flow. 

4. Integration Flow Engine does the necessary request (payload, query parameter, path 
parameter and/or header) transformation as defined by the integration flow and finally, 
invokes the external endpoint EP1. 

5. Upon receiving the response, the Integration Flow Engine performs payload data 
transformation as defined by the integration flow and finally, sends the resulting payload 
as response to ASG. 

6. ASG sends the received response to consumer1’s service. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 90 / 191 

 

Figure 76: Example of Synchronous Communication Workflow 

 

Asynchronous Communication Workflow (Figure 77): 

1. publisher1’s service publishes data to the Data Spine Message Bus over topic p1/topic1 
with the key pk. 

2. The integration flow created by subscriber1 subscribes to this topic p1/topic1 using the 
key pk, transforms the payload data from publisher1’s data model pDM to its own data 
model sDM and finally, publishes this transformed payload data to the Message Bus over 
topic s1/topic1 with the key sk. 

3. subscriber1’s service subscribes to the topic s1/topic offered through the Message Bus 
using key sk and starts receiving the data. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 91 / 191 

 

Figure 77: Example of Asynchronous Communication Workflow 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 92 / 191 

3 Interfaces for Tools, Systems and Platforms 

This section presents the interfaces for tools, services, systems and platforms in the EFPF 
ecosystem. It focuses on the APIs of these entities and other interfaces such as GUIs are 
presented in deliverable D4.1 and other relevant deliverables. This section also discusses 
some other topics closely concerned with APIs such as API Management and Interface 
Contracts. 

 Introduction  

The individual tools, services, systems and platforms, provided by different partners (and 
external entities) to the EFPF project are the building blocks of the EFPF ecosystem. These 
tools, services, systems and platforms must be able to communicate through the Data 
Spine. In that respect, relevant interfaces and APIs need to be defined.  

The definitions of these APIs need to be complete i.e. the definition should cover all the 
possible aspects of the API that a consumer needs to know to consume the service. 
Moreover, the vocabulary for defining the APIs should be uniform as otherwise the consumer 
might need to go through API definitions following different vocabularies that would prove to 
be more time consuming, tedious and error-prone.  

To avoid such issues, in EFPF, API specification standards are used to specify the APIs. 
For specifying APIs of services that follow synchronous request-response communication 
pattern, OpenAPI Specification [OAS20] standard is used whereas for specifying APIs of 
services that follow asynchronous publish-subscribe communication pattern, AsyncAPI 
Specification [AAS20] standard is used. Both of these industrial-grade standards provide 
standard vocabulary, structure and formats for specifying the APIs. Moreover, they provide 
tooling such as editors for writing the API specifications, documentation generation tools for 
visualising the APIs, code generation tools for generating server and client side source for 
providing or consuming APIs in various programming languages, testing tools to perform 
functional tests on APIs, etc. Thus, use of these standards for specifying APIs ensures 
uniformity across and completeness of the API specifications in EFPF. 

The next section presents a brief description of the APIs of tools, services, systems and 
platforms that together constitute the EFPF ecosystem. The exact API specification 
documents are included in Annex C. As the exact API specifications for some tools depend 
upon the definition of concrete pilot scenarios, the preparation of the exact API specifications 
is work in progress. A brief description of the APIs of base platforms is also given in the next 
section. Other topics that are closely related to API Management such as the lifecycle 
management of APIs, discovery of APIs, monitoring of API endpoints, API contracts, etc. 
are also presented in the subsequent sections. 

 APIs for Tools, Systems and Platforms 

This section presents a brief description of the APIs of tools, services, systems and platforms 
that together constitute the EFPF ecosystem. The exact API specification documents are 
included in Annex C. 

3.2.1 EFPF Platform 

 Portal 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 93 / 191 

The EFPF portal consists of an Angular web application (frontend) and a .NET-Core-based 
backend. The frontend does not provide any API endpoints. The backend provides an HTTP 
REST API for user registration and event logging. This API is provided only for the frontend 
and does not provide endpoints to other components at the current time. 

Figure 78 provides an overview of the existing HTTP REST API of the Portal Backend, which 
shows REST API for creating and updating user and create events for logging purposes. 

REST Endpoint HTTP 
Method 

Description 

/user POST Creates new user 

/user PUT Updates an existing user 

/event POST Creates new event 

Figure 78: EFPF Portal Backend HTTP REST API 

3.2.1.1.1 HTTP REST API for User Registration 
The backend provides API endpoints required for creating and updating users. While 
updating a new user only contacts the EFPF Security Portal (Section 2.2.5), creating a new 
user is using a third-party mail service and the Smart Contracting (3.2.1.6). 

Figure 79 shows the data model for creating a user and Figure 80 shows the data model for 
updating a user. 

 

Figure 79: EFPF Portal - User Registration Data Model 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 94 / 191 

 

Figure 80: EFPF Portal - User Update Data Model 

The attributes are described below: 

The UserRegistration object consists of: 

• user: user object to be created 

• acceptedToC: Whether or not the user agreed to the terms and conditions at registration 
time 

• acceptedBlockChain: Whether or not the user agreed to the BlockChain conditions at 
registration time 

The UserUpdate object consists of: 

• user: user object including attributes to be updated 

• id: user id of the user object to be updated 

The User object consists of: 

• email: The users email address, also used as username at registration time 

• password: The password set up by the user at registration time 

• firstName: First name of the user 

• lastName: Last name of the user 

• company: Company name 

• vatin: VAT identification number of the company 

• street: Street information of the company 

• postalCode: Postal code of the company 

• city: City of the company 

• country: Country of the company; Format: ISO 3166-1 Alpha-2 code 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 95 / 191 

• sector: Industry sector of the company; Format: NACE Rev.210 

3.2.1.1.2 HTTP REST API for Event Logging 
The backend provides an API endpoint for logging events to the Accountancy Service 
(Section 3.2.1.2). 

 

Figure 81: EFPF Portal – Event Data Model 

The attributes of the event object are described below: 

• userId: unique id of the user provided by the token 

• action: Defined value of what the action the user executed; Currently the following 
options are available: 

• PLATFORM_VISIT: User visited a platform 

• TOOL_VISIT: User opened a tool 

• SEARCH_EVENT: User conducted a product search 

• platform: A defined value in which platform the event occurred 

• timestamp: Timestamp when the event occurred 

• visitedPlatform: A defined value for the platform the user has visited 

• visitedTool: A defined value for the tool the user has opened 

The following attributes are only provided in case a search has been conducted: 

• query: The query string the user has entered 

• facetQuery: Facet query string 

 
10 

https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_NOM_DTL
&StrNom=NACE_REV2&StrLanguageCode=EN 

http://www.efpf.org/
https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_NOM_DTL&StrNom=NACE_REV2&StrLanguageCode=EN
https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_NOM_DTL&StrNom=NACE_REV2&StrLanguageCode=EN
https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_NOM_DTL&StrNom=NACE_REV2&StrLanguageCode=EN


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 96 / 191 

• queriedPlatforms: Platforms included in the search 

• searchResponse: Response of the search query 

• searchType: A defined value if products or companies has been searched for 

 Marketplace 

The Marketplace framework consists of an Angular web component, which is 
communicating with external marketplaces. Future changes will introduce a backend 
component, which will manage communication with other EFPF components as seen in 
Figure 11. This component will handle the communication with the Data Spine and external 
marketplaces, which is currently handled in the web component itself. 

As the marketplace component does not provide any REST API endpoints to other 
components but only consumes endpoints, no API description is being provided at this point. 
This section will be updated when the backend component has been implemented. 

Accountancy Service 

Accountacy Service uses Logstash as a data ingestion and server-side data processing 
pipeline. The data sent to Logstash are forwarded to Elasticsearch for persistence after 
executing certain ingestion pipelines; and then Kibana dashboards are automatically 
updated based on the certain fields stored on Elasticsearch. In other words, Accountancy 
Service uses a basic data model for visualization.  
Currently, there is a running instance of Logstash component that is publicly available 
through a public endpoint so that events from EFPF Portal and external marketplaces can 
be sent  using HTTP POST method. Events are modeled as a JSON message related with 
the action conforming to the data model described below. This will be enough for the 
Accountancy Service to capture the data and update the dashboards. In the future releases 
of the Accountancy Service, its integration with the Service Registry will be realised. In this 
way, Logstash endpoint of the Accountancy Service will discoverable by external 
marketplaces through the Service Registry and new marketplaces will be integrated easily. 
Following event types can be tracked by the Accountancy Service, and they must conform 
the presented data model so that Kibana dashboards can be updated automatically: 
 
LOGIN 
This event is sent to Logstash when a user logs in to the EFPF Portal. 
 

 
Figure 82. Accountancy Service Login Event Data Model 

 
The attributes of the LoginEvent object are described below: 

• action: Default "LOGIN" value for identifying login events among all the data kept on 
Elasticsearch 

• userId: Identifier of the user assigned by the platform 

• platform: Default “EFPF” value as the name of the platform 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 97 / 191 

 
REGISTER_COMPANY 
This event is sent to Logstash when a new company is registered to the EFPF Portal. 
 

 
Figure 83. Accountancy Service Company Registration Event Data Model 

 
The attributes of the RegisterCompanyEvent object are described below: 

• action: Default “REGISTER_COMPANY" value for identifying company registrations 
among all the data kept on Elasticsearch 

• companyId: Identifier of the company assigned by the platform 

• platform: Default “EFPF” value as the name of the platform 

 
REGISTER_USER 
This event is sent to Logstash when a user registers to the EFPF Portal. 
 

 
Figure 84. Accountancy Service User Registration Event Data Model 

 
The attributes of the RegisterUserEvent object are described below: 

• action: Default "REGISTER_USER" value for identifying user registrations among all the 
data kept on Elasticsearch 

• userId: Identifier of the user assigned by the platform 

• companyId: Identifier of the company that the user belongs to 

• platform: Default “EFPF” value as the name of the platform 

 

PLATFORM_VISIT 

This event is sent to Logstash when a user visits a base platform through the EFPF Portal. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 98 / 191 

 
Figure 85. Accountancy Service Platform Visit Event Data Model 

 
The attributes of the PlatformVisitEvent object are described below: 

• action: Default “PLATFORM_VISIT" value for identifying platform visit events among all 

the data kept on Elasticsearch 

• userId: Identifier of the user visiting the platform 

• platform: Default “EFPF” value as the name of the platform 

• visitedPlatform: The name of the platform visited by the authenticated user 

 
TOOL_VISIT 

This event is sent to Logstash when a user visits a tool/service offered by the EFPF 
platform. 

 

Figure 86. Accountancy Service Tool/Service Visit Data Model 

 

The attributes of the ToolVisitEvent object are described below: 

• action: Default “TOOL_VISIT" value for identifying tool/service visit events among all 

the data kept on Elasticsearch 

• userId: Identifier of the user visiting the tool/service 

• platform: Default “EFPF” value as the name of the platform 

• visitedTool: The name of the tool/service visited by the authenticated user 

 

SEARCH_EVENT 

This event is sent to Logstash when a user searches for products/services or companies 
on EFPF Portal. 
 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 99 / 191 

 
Figure 87. Accountancy Service Search Event Data Model 

 
The attributes of the SearchEvent object are described below: 

• action: Default "SEARCH_EVENT" value for identifying product/service/company 

search events among all the data kept on Elasticsearch 

• userId: Identifier of the user performing the search operation 

• query: The search keyword 

• searchType: Depending on the type of the search, it can be either 

COMPANY_SEARCH or PRODUCT_SEARCH 

• queriedPlatforms: Names of the target platforms that the current search operation 

executed on 

• platform: Default “EFPF” value as the name of the platform 

 
PAYMENT 

This event is sent to Logstash when a user purchases products/services on base 
marketplace if the user initiated his/her journey from EFPF Portal. 
 

 
Figure 88. Accountancy Service Payment Event Data Model 

 
The attributes of the PaymentEvent object are described below: 

• action: Default "PAYMENT" value for identifying payment events among all the data 

kept on Elasticsearch 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 100 / 191 

• originPlatform: If the user is coming from EFPF platform, "EFPF" constant value must 

be used since this is essential for the cashback mechanism to work, otherwise the value 

will be null or this field is omitted 

• platform: Name of the platform that realizes the transaction: NIMBLE, SMECluster, VF-

OS, etc. 

• transactionId: If available. Indicates the identifier of this transaction. 

• buyerId:  If available. Indicates the identifier of the buying company/user on the platform 

that realizes the transaction 

• sellerId: If available. Indicates the identifier of the selling company/user on the platform 

that realizes the transaction 

• totalAmount: The total amount paid by the buyer company/user. Please note that, this 

field should be a numeric value 

• status: Status of the payment and can be "pending", "completed" or "cancelled" 

• products: List of products purchased 

• productId: Id of the product 

• productName: Name of the product 

• unitPrice: Price of the single product 

• productCount: Number of the current products purchased in this transaction 

• totalPrice: Total price of products (unitPrice x productCount) 

 Matchmaking 

Matchmaking Service 

Currently the matchmaking service only supports federated search API and ontology 
indexing APIs.  

• Federated Search API: Provides API endpoints to search items, parties and categories 

(Swagger API Spec: https://efpf-security-portal.salzburgresearch.at/api/index/swagger-

ui.html#/index-controller) 

• Ontology Controller API: Provides API endpoints to add/delete ontologies (e.g.: eclass, 

furniture ontology etc) in the federated index. (Swagger API Spec: https://efpf-security-

portal.salzburgresearch.at/api/index/swagger-ui.html#/ontology-controller)  

Matchmaker for Online Bidding Process  

This Matchmaking API, has migrated from COMPOSITION project and been integrated to 
the EFPF common platform. The details of this API have been included in Section 3.2.2.1. 

 Governance & Trust 

In Governance and Trust component, the APIs to add/delete/modify EFPF policies are 
currently under development.   

 Business & Network Intelligence 

At present, the only API developed and being used under this section is for iQluster platform. 
This API has been developed to enable data share between iQluster platform and the EFPF 
matchmaking indexing workflow. 

http://www.efpf.org/
https://efpf-security-portal.salzburgresearch.at/api/index/swagger-ui.html#/index-controller
https://efpf-security-portal.salzburgresearch.at/api/index/swagger-ui.html#/index-controller
https://efpf-security-portal.salzburgresearch.at/api/index/swagger-ui.html#/ontology-controller
https://efpf-security-portal.salzburgresearch.at/api/index/swagger-ui.html#/ontology-controller


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 101 / 191 

The API structure is made up of multiple API calls that return specific information. Firstly, 
the user needs to retrieve the appropriate API token for iQluster’s production environment. 
This can be found under ’My Account’ section of the user profile as shown in Figure 89. 

 

Figure 89: API Token Generator for iQluster Platform 

The various API calls with their description are provided below: 

1. Get all companies: This is an API that allows you to retrieve all companies you have 
permission to retrieve. Using the company number returned in the API, you can retrieve 
more information about this company using other API calls. 

2. Get basic company data: This API allows you to retrieve all company information that 
iQluster holds for the company ids (retrieved from the first API above) that are called 
with this API. Some general fields are mentioned below as examples: 

a. Company description (from company profile) 

b. Company status (active, dormant etc.) 

c. Incorporation date 

d. Website 

e. Social media handles… 

3. Get company address: This API allows you to retrieve all the addresses stored in 
iQluster platform for the company ids used in this call. iQluster can hold multiple 
international locations for companies.  

4. Get company capability: iQluster builds capability structures to facilitate classification 
of member companies. This API allows you to retrieve the capabilities attributed to the 
company as well as the parent and child node for that capability field so that it provides 
more context. 

Following successful testing of this implementation. The partners have agreed to expand on 
these API calls to include even more information including fields such as (supply chain 
connections, financial information etc.) 

 Smart Contracting 

The objective of the EFPF Blockchain and Smart Contracting Service is to allow applications 
built on EFPF to leverage distributed ledger technology to provide distributed trust, 
transparency and decentralized business models. A set of services will allow EFPF 
stakeholders to verify the authenticity, origin and standards of data and services. The 
chosen distributed ledger implementation is Hyperledger Sawtooth, which has a number of 
desirable characteristics that address the design concerns for the EFPF Blockchain and 
Smart Contracting Service. It can support multiple domains due to separation between the 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 102 / 191 

application level with specific transaction families, and the core system managing the 
distributed ledger cryptography, event system, parallel transactions and distributed data 
synchronization. A transaction family is a set of operations allowed on the ledger, from 
simple transaction rules to programmable smart contracts. It can provide a private 
blockchain for a business network with consensus algorithms that require less resources, 
and has permissioning features that enable a federation level solution where no single entity 
will own the distributed ledger but all can have varying levels of access, ensuring data 
security. Hyperledger Sawtooth allows development of smart contracts in a number of 
languages and has compatibility with Ethereum contracts through the Seth transaction 
family. 

 

Figure 90: Blockchain and Smart Contracting 

On this foundation, EFPF has built applications for delivery, supply chain visibility, circular 
economy and supporting DApps using real-world evidence together with distributed ledgers 
as proof-of-concept and re-usable examples.  

The sawtooth network is the foundation of the Blockchain and Smart Contracting Service, 
with different application running on top. It will be distributed among EFPF stakeholders, 
with no central authority, but with the possibility to control permissions and ownership of 
proprietary data.  

 Data Analytics 

In the EFPF platform the Data Analytic solutions are offered as standalone Cloud-based 
services, which make use of the EFPF Data Spine functionalities for data exchange, data 
interoperability and security features.  

The integration of the analytic solutions only concerns the UI level where the interfaces of 
the analytic solutions are made available through the EFPF Portal.  

 Workflow & Business Process 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 103 / 191 

In the EFPF platform the WASP solution offered as standalone Cloud-based service, which 
make use of the EFPF Data Spine functionalities for data exchange, data interoperability 
and security features.  

The integration of the analytic solutions only concerns the UI level where the interfaces of 
the WASP solution is made available through the EFPF Portal.  

 Secure Data Storage 

The primary interaction with Secure Data Store Solution is the resource access APIs, which 
allows specific time ranges to be addressed from a full resource range, enforcing a 
minimization of data exposure. 

To support the use of the User Managed Access (UMA) standard for fine-grained 
management of authorization access, each resource needs to be available as a URL. 
Secure Data Store Solution needs to address the primary level of resource management as 
the overall set of timeseries data collected from sensors. As such, this is used to form the 
base URL, which is used by data owners to manage the resource collection. Resource 
owners can use a REST API to manage data sensor configuration: 

• Human readable description 

• Selection criteria within broker environment (i.e. path) 

• Data semantics, i.e. unit specification 

• Pseudonymization policies 

Secure Data Store Solution is in early stages of development, and the specific data model 
API access is still changing. Configuration of the sensor specifications occurs via a REST 
interface supporting common (Create, Read, Update, Delete) CRUD operations with a 
JSON version of the data model. A detailed description of the stable data model will be 
provided in the next deliverable. 

The primary resource is broken down into time regions by specifying a start and end time 
for the range, under the URL of the base resource. This selection of the primary resource 
can then be addressed externally, and authorization managed. The contents of the time 
range selected is expected to be retrieved by analysis tools, looking to apply computer 
learning techniques on past knowledge. As such, the API provides analysis tools the ability 
to read sensor data. Basic timeseries queries are supported, but the primary mechanism to 
retrieve data is paging.  

Data access is guarded with authorization according to the User Managed Access protocol 
standard, which build on top of authentication and identity management OAuth and OpenID 
Connect. Data is further guarded by pseudonymization techniques. The exact configuration 
of these controls occurs within the Secure Data Store Solution.  

 Smart Factory Tools & Services 

3.2.1.10.1  Industreweb Global 
Industreweb Global is essentially a web application where Industreweb admin tools are 
provided, along with a few management services (workflow, security etc.).  
Industreweb Global contains an API Library 
 

REST Endpoint HTTP Method Description 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 104 / 191 

/GetAllCollects GET Gets all collect 
configurations from the 
database 

/GetAllConnectors GET Gets all the connector 
configurations from the 
database 

/GetAllDisplays GET Gets all display 
configurations from the 
database. These are shop 
floor nodes that display 
data. 

/GetAllConnectorTags GET Gets all the connector 
tags from the database 

Figure 91: Industreweb Global API Endpoints 

GetAllCollects returns a list of Collect objects, this consists of: 
 CollectID: A unique ID assigned to the Collect configuration 
 CollectGuid: A unique Guid assigned to the Collect configuration 
 Name: Name of the Collect configuration 
 Description: Description of the Collect configuration 
 CreatedOn: A string showing who created the Collect in the database 

CreatedBy: A date-time string showing when the Collect was created in the database 
ModifiedBy: A string showing who most recently modified the Collect (if modified from 
original insert) 
ModifiedOn: A date-time string showing when the Collect was most recently modified 
in the database (if modified from original insert) 

 
GetAllConnectors returns a list of Connector objects, this consists of: 
 ConnectorID: A unique ID assigned to the Connector configuration 
 ConnectorGuid: A unique Guid assigned to the Connector configuration 
 ConnectorType: ConnectorType object the Connector belongs to 
 Collect: Collect object the Connector belongs to 
 CreatedOn: A string showing who created the Connector in the database 

CreatedBy: A date-time string showing when the Connector was created in the 
database 
ModifiedBy: A string showing who most recently modified the Connector (if modified 
from original insert) 
ModifiedOn: A date-time string showing when the Connector was most recently 
modified in the database (if modified from original insert) 
DeployedBy: A string showing who most recently deployed the Connector (if 
deployed) 
DeployedOn: A date-time string showing when the Connector was most recently 
deployed (if deployed)  

 
GetAllDisplays returns a list of Display objects, this consists of: 
 DisplayID: A unique ID assigned to the Display configuration 
 DisplayGuid: A unique Guid assigned to the Display configuration 
 Name: Name of the Display configuration 
 Description: Description of the Display configuration 
 CreatedOn: A string showing who created the Display in the database 

CreatedBy: A date-time string showing when the Display was created in the database 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 105 / 191 

ModifiedBy: A string showing who most recently modified the Display (if modified from 
original insert) 
ModifiedOn: A date-time string showing when the Display was most recently modified 
in the database (if modified from original insert) 

 Screen: Screen object that the Display belongs to 
 
GetAllConnectorTags returns a list of ConnectorTag objects, this consists of: 
 DisplayID: A unique ID assigned to the ConnectorTag configuration 
 DisplayGuid: A unique Guid assigned to the ConnectorTag configuration 
 Connector: Connector object which the ConnectorTag belongs to 
 Name: Name of the ConnectorTag configuration 
 Description: Description of the ConnectorTag configuration 
 CreatedOn: A string showing who created the ConnectorTag in the database 

CreatedBy: A date-time string showing when the ConnectorTag was created in the 
database 
ModifiedBy: A string showing who most recently modified the ConnectorTag (if 
modified from original insert) 
ModifiedOn: A date-time string showing when the ConnectorTag was most recently 
modified in the database (if modified from original insert) 

3.2.1.10.2  Risk Tool 
The Risk Tool provides an interface for users to design and use risk analysis “recipes”. 
Recipes transform an input JSON object to another format. This can, for example, be used 
to compute a specific type of risk. Recipes can be used by configuring workflows, which can 
either be run a single time for testing purposes, or can be run continuously by subscribing 
to specific topics on the Data Spine. 

The current version of the REST API is v1. Its root is found at “/api/v1”. The following 

REST API endpoints are currently available: 

 

REST Endpoint HTTP Method Description 

/recipes/ POST Add a recipe 

/recipes/ GET List all recipes 

/recipes/{rid} GET Retrieve single recipe 

/recipes/{rid} DELETE Delete a recipe 

/recipes/{rid} PATCH Update a recipe 

/workflows/ POST Add a workflow 

/workflows/ GET List all workflows 

/workflows/{wid} GET Retrieve single workflow 

/workflows/{wid} DELETE Delete a workflow 

/workflows/{wid} PATCH Update a workflow 

Figure 92: Risk Tool REST API Endpoints 

The REST API will be expanded in future versions to include endpoints to run workflows 
either once or via subscriptions. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 106 / 191 

3.2.1.10.3  Catalogue Service 
Catalogue Service provides various REST endpoints to manage catalogues as well products 
and services. Basically, these endpoints are responsible for CRUD (Create, Read, Update 
and Delete) on both catalogues and products/services and the corresponding results are 
returned in JSON format which conforms to UBL 2.1 specification. 

Currently, there are two main sets of REST services for Product Category Management and 
Catalogue Management. Details of Product Category Management endpoints can be seen 
in the below table: 

REST Endpoint HTTP Method Description 

/taxonomies/{taxonomyId}/categories/tree GET Returns the category tree 
for the given taxonomy 
and category 

/taxonomies/{taxonomyId}/root-categories GET Returns the root 
categories for the given 
taxonomy 

/taxonomies/{taxonomyId}/categories GET Returns a list of 
categories for a given 
keyword 

/taxonomies/{taxonomyId}/categories/children-
categories 

GET Returns the child category 
classes for the specified 
parent class 

Figure 93: Product Category Management API Endpoints 

Catalog Management endpoints are described in the following table: 

REST Endpoint HTTP 
Method 

Description 

/catalogue/{standard}/{uuid} GET Returns the catalogue identified by the given 
identifier 

/catalogue/{standard} POST Stores the given catalogue 

/catalogue/{standard} PUT Updates a catalogue with the new data 

/catalogue/{standard}/{uuid} DELETE Deletes the catalogue with the given identifier 

/catalogue/template GET Generates a template for the product category 
specified by the given identifier 

/catalogue/template/upload POST Uploads the template 

Figure 94: Catalog Management API Endpoints 

3.2.1.10.4  Symphony Event Reactor 
The Symphony Event Reactor gives the ability to trigger actions and alarms through its 
Event Manager/ Alarm Manager in response to different kinds of event types. As it is shown 
in its UML component diagram it has Connector for receiving the triggering message for 
alarms and events from message bus services. Symphony Event Reactor accepts only 
specific data model as input. The data model schema is: 

{ 
  "message_type": <type>, 
  "timestamp": <epoch_ts>, 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 107 / 191 

  "payload": { 
    "state": "<state>", 
    "channel": <channel_id>, 
    "description": "<risk_description", 
    "severity": "<severity_level>", 
    "timestamp": "<epoch_ts>" 
  } 
} 

The attributes are: 

• message type: type of the message, it is fixed on “alarm” 

• timestamp: time stamp in EPOCH format 

• state: state of the alarm or event 

• channel: channel 

• description: description of the risk 

• severity: severity level of the alarm 

• timestamp: time stamp in EPOCH format 

3.2.1.10.5  Symphony Data Storage 
Symphony Data Storage is a highly scalable and high-performance data storage which is 
designed to handle large amount of AMQP/MQTT data. As it is shown in its UML component 
diagram, it has Connector for ingesting data from message bus services and REST API for 
retrieving the data. 

• AMQP Connector (Input): Symphony Data Storage accepts only specific data model as 
input. The data model schema is: 

{ 
  "oid": "<id>", 
  "timestamp": "<iso_ts>", 
  "value": {<payload_attributes>} 
} 

    The attributes are:  

• “oid”: the unique id of the publisher e.g. “TemperatureSensor100” 

• “timestamp”: the timestamp in IOS 8601 format. 

• “value”: the payload of the published message could be with single or multiple 
attributes. 

• REST API (Output): for querying the Symphony Data Storage:  
  

REST Endpoint HTTP Method Description 

/api/v1/object/{oid}?detail=_any GET Gets the complete 
set of published data 
separated by 
timestamp including 
all attributes. 

/api/v1/object/{oid}?detail={payload attribute} GET Gets specific 
payload attribute. It 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 108 / 191 

could be single or 
multiple (comma 
separated) 

/api/v1/object/{oid}?limit={number} GET Gets limited number 
of data 

/api/v1/object/{oid}?order={asc/desc} GET Gets the data with 
“ascending” or 
“descending” order 

/api/v1/object/{operationId}?start={timestamp 
in Unix Epoch} 

GET Gets the data 
starting from specific 
time. 

/api/v1/object/{operationId}?start={timestamp 
in Unix Epoch}&end={timestamp in Unix 
Epoch } 

GET Gets the data in 
specific time period. 

Figure 95: Symphony Data Storage REST API Endpoints 

 Factory Connectivity 

As described in Section 1 EFPF supports a numbers of factory connectivity solutions. This 
section will describe the API used by all factory connectivity solution in EFPF. However, the 
same API can be used by external factory connectivity solutions to integrate and start 
publishing messages to the EFPF platform.  

The factory connectivity solutions API is described as a specification of the MQTT topic 
namespace. Since Pub/Sub communication is used in EFPF to exchange factory data with 
the EFPF services, the API of the factory connectivity solutions is based on Pub/Sub 
communication and describes the topic namespace and payload. Currently MQTT is main 
standard used in EFPF to exchange factory data; therefore, the factory connectivity API 
specification is based on MQTT. Future work is to include other protocols such as AMQP 
and analyse if the same namespace can be applied  

3.2.1.11.1  MQTT Topic Namespace and Payload 
The MQTT topic namespace is using the Sparkplug™ Specification of the MQTT topic (not 
the payload definition). Thus, all the factory connectivity solutions will use the following 
structure: 
 
namespace/group_id/message_type/edge_node_id/[device_id] 
 
Where the ‘namespace’ is the root element and is created when an EFPF user purchase an 
IoT gateway or a factory connector. The ‘group_id’ is a logical grouping of the factory 
connectors and IoT gateway, referred to in Sparkplug Specification as Edge of Network 
(EoN) nodes, e.g. factory connectors and IoT gateways that can be grouped as Assembly 
line A or Factory B. The ‘message_type’ elements specifies the type of message being sent 
and are follow: 
• NBIRTH: Birth certificate for the factory connector/IoT gateway (MQTT EoN nodes) 
• NDEATH: Death certificate the factory connector/IoT gateway (MQTT EoN nodes) 
• DBIRTH: Birth certificate for devices connected to the factory connector/IoT gateway 
• DDEATH: Death certificate for devices connected to the factory connector/IoT gateway 
• NDATA: Factory connector/IoT gateway data message 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 109 / 191 

• DDATA: Devices data message connected to the factory connector/IoT gateway  
• NCMD: Factory connector/IoT gateway command message. 
• DCMD: Devices command message connected to the factory connector/IoT gateway  
• STATE: Critical application state message. 

The ‘edge_node_id’ element uniquely identify the MQTT Edge of Network node which is the 
EFPF factory connector/IoT gateway. If there are devices behind the factory connector/IoT 
gateway, then would be identified using the ‘device_id’. 

The payload the MQTT message follows the OGC Web Enablement standard suite mainly 
focusing on OGC SensorThings API for Industrial IoT data. When the data shared is focused 
on machine and production data OPC UA Part 100: Device Information Model. More details 
about the data models used please refer to section 4.  

3.2.1.11.2  Factory Connector Gateway Management Tool 
 
The FCG API is part of the FCGMT and it provides a collection of services to interact with a 
repository of producers/consumers IoT devices that publish/subscribe to data from the 
Message Broker, as well as associated topics. 

Figure 96 includes the services provided by the HTTP REST API of the FCGMT. This is 
mainly a collection of CRUD operations (create, read, update and delete) of Device objects 
provided by RESTful services. 

 

REST Endpoint HTTP 
Method 

Description 

/ GET Retrieves all devices 

/{device} POST Creates new ‘Device’ object with 
an ID as primary key 

/{device} GET Retrieves a ‘Device’ object 

/{id} PUT Updates the existing ‘Device’ 
based on the submitted ID 

/{id} DELETE Deletes the ‘Device’ 

Figure 96: FCG HTTP REST API 

Internally, the API manages the models Device and Topic, which are related in order to 
represent what topics are produced or consumed by the devices. The relationships between 
devices and topics are defined directly updating (PUT) the information of a given device. 
This information includes to what topics the device publishes data as well to what topics the 
device is subscribed to. 

Besides this, an API for administration tasks in the Message Broker has been also 
implemented. This API enables to perform some operations such as creating exchanges, 
queues and routing key bindings on the RabbitMQ instance, as well as purge and delete 
operations. 

Figure 97 lists the services provided by this Message Broker API which can be also 
consumed by any other component in a RESTful manner.  

 

REST Endpoint HTTP 
Method 

Description 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 110 / 191 

/createBinding?exchangeName= 

?queueName=?binding 

POST Creates a new exchange (or uses 
default if not indicated), and a 
new queue, and performs a 
binding between the queue and 
the binding parameter 

/sender?routingkey= 

?exchangeName=?queueName= 

?binding 

Body message 

PUT Published data (message) to the 
specified exchange, queue and 
routing key (topic). If the 
exchange is not indicated, the 
default one is used. The specified 
resources are created in the 
RabbitMQ instance if they are 
have not been created yet. 

/receiver?queueName GET Retrieves one-by-one messages 
from a queue 

/admin/purgeQueue?queueName PUT Removes all the messages of a 
queue 

/admin/deleteQueue?queueName DELETE Deletes a queue 

/admin/deleteExchange 

?exchangeName 

DELETE Deletes an exchange 

Figure 97: Message Broker (RabbitMQ) HTTP REST API 

As of the dat. 
e of this document, the definition is still open to additions to improve the overall functionality 
of the FCGMT component, so some subtle changes may occur in the managed models as 
well as the endpoints provided by the included APIs. 

3.2.2 Base Platforms 

 COMPOSITION 

This Matchmaking API, has migrated from COMPOSITION project and been integrated to 
the EFPF common platform. The API provides two main functionalities to the EFPF platform:  

1. Services that provide all the information about companies/services coming from 
COMPOSITION project in order to be used for indexing and federated search mechanism 
in EFPF level 

2. Services that enable the matchmaking of companies’ agents and offers’ evaluation in 
online bidding process of EFPF which is a core service especially for the Circular 
Economy pilot 

The integration has been performed by indexing all information with Apache Nifi and Solr. 
The COMPOSITION ontology instances has been indexed by the Apache Solr, in order to 
ensure that all required information about services and products can be available to EFPF 
platform. Furthermore, the Semantic Matchmaker’s services are accessible through Apache 
NiFi connecting to the RESTful API for multi-level matchmaking and online bidding. 

The Matchmaker API is an application for automated online bidding through agent-level and 
offer-level matchmaking. It is an Ontology based framework which applies semantic rules 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 111 / 191 

and SPARQL queries to the dedicated Ontology for requesters and suppliers straightforward 
matching and implements weighted criteria assessment for offer evaluation and best offer 
suggestion. The Matchmaker is connected with the Marketplace agents and stakeholders 
through RESTful web services and HTTP protocol.  

The basic concepts of the Matchmaker Ontology are: Business Entity (Company), 
Service/Product, Operations (Generic Activity Sectors) and provided Goods. Table 1 
contains the web services catalog of the Matchmaker API. GET services are available for 
retrieving the Ontology information, whereas POST web services are used in order to insert 
new information and start negotiations towards matchmaking and online bidding. The 
services specification is presented in Annex C. 

REST Endpoint HTTP 
Method 

Description 

/getInfoFromOntology GET Retrieves all Marketplace 
Companies, Services and 
Products with the corresponding 
information 

/getMarketplaceCompanies GET Retrieves Marketplace 
Companies with the 
corresponding information 

/getMarketplaceServices GET Retrieves Marketplace Services 
and Products with the 
corresponding information 

/getServicesFromCompany GET Retrieves Marketplace Services 
and Products of a specific 
Company with the corresponding 
information 

/getCompanyDetails GET Retrieves specific Company’s 
information 

/getGoodsByCategory GET Retrieves the Marketplace Goods 
for each Service Category 

/deleteCompany GET Deletes a specific Company from 
Marketplace 

/performMatchmaking POST Performs agent level 
matchmaking 

/offersEvaluation POST Performs offer level matchmaking 

/setMarketplaceCompany POST Inserts new Company in 
Marketplace 

/setMarketplaceService POST Inserts new Service in 
Marketplace 

Figure 98: Matchmaker RESTful services catalog 

Detailed descriptions of the matchmaking mechanisms are available on D5.1. The bidding 
process interfaces are documented on D5.3. 

 NIMBLE 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 112 / 191 

NIMBLE is a federated, multi-sided, and cloud services-based business ecosystem that 
supports: 

• B2B collaboration for industry, manufacturers, business, and logistics 

• ICT-based innovation of products and evolution of traditional business models 

• Federated, competitive yet interoperable instances of the platform 

NIMBLE platform aims to achieve the following objectives: 

• Create a platform ecosystem to attract early adopters: providers, vendors, buyers, 

collaborating using federated platform instances 

• Ensure ease of entry and initial ease of use with quick rewards 

• Grow platform usage by showing the benefits and by adding services where the 

need arises (release early, release often) 

• Master the usage of the platform step-by-step to evolve business cooperation 

• From the earliest steps to master-level, ensure trust, security and privacy 

NIMBLE platform was developed on Microservices architecture on Java Spring Boot 

framework. Following table encompasses the main services, their descriptions and the API 

documentation links.   

Service registry: https://efpf-nimble.salzburgresearch.at/api/routes 

Service 
Name 

Description Swagger Documentation URL 

Identity 

Service 

Service for managing 

identities on the NIMBLE 

platform. 

Working as a middleware 

for Keycloak IS Server. 

Providing SSO capability to 

the whole platform. With the 

support of OAuth 2 + 

OpenID Connect protocols. 

All the Users and 

Companies that are 

registered to the platform 

are persisted in the Identity 

Service Persistence Layer.  

Inbuilt support to add and 

manage employees or 

members of a company with 

appropriate roles. 

https://efpf-

nimble.salzburgresearch.at/api/identity/swagger-

ui.html 

Catalog 

Service 

Manage Catalogs and 

catalogue-lines (products) 

https://efpf-

nimble.salzburgresearch.at/api/catalog/swagger-

ui.html#/ 

http://www.efpf.org/
https://efpf-nimble.salzburgresearch.at/api/routes
https://efpf-nimble.salzburgresearch.at/api/identity/swagger-ui.html
https://efpf-nimble.salzburgresearch.at/api/identity/swagger-ui.html
https://efpf-nimble.salzburgresearch.at/api/identity/swagger-ui.html
https://efpf-nimble.salzburgresearch.at/api/catalog/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/catalog/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/catalog/swagger-ui.html#/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 113 / 191 

for companies on the 

platform. 

All the related binary-

content are persisted in the 

catalog-persistence layer 

as well. 

Business 

Process 

Service 

Handles the business 

workflow and persists 

related information of the 

platform. 

Using Camunda as the 

workflow designing tool and 

have native business 

workflow defined for 

NIMBLE-platform. 

Manage and persist all the 

digital agreements between 

parties in the platform. 

Provide the backend 

functionality for NIMBLE-

shopping carts as well as 

expose the ability to group 

negotiations as projects. 

 

https://efpf-

nimble.salzburgresearch.at/api/business-

process/swagger-ui.html#/ 

Indexing 

Service 

Service works as the middle 

layer to index products, 

companies also  properties 

and classes of the used 

ontologies in Apache Solr. 

https://efpf-

nimble.salzburgresearch.at/api/index/swagger-

ui.html#/ 

Trust Service  Microservice which 

calculates and manages 

the trust profiles of 

companies. 

Have a predefined set of 

trust attributes which can be 

extended according to 

requirement. 

https://efpf-

nimble.salzburgresearch.at/api/trust/swagger-

ui.html#/ 

Data-

Aggregation 

Service 

Working as the layer to 

aggregate data. 

Have the ability to 

aggregate data  on 

company as well as 

platform levels which gives 

the ability to expose data 

https://efpf-nimble.salzburgresearch.at/api/data-

aggregation/swagger-ui.html#/ 

http://www.efpf.org/
https://efpf-nimble.salzburgresearch.at/api/business-process/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/business-process/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/business-process/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/index/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/index/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/index/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/trust/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/trust/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/trust/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/data-aggregation/swagger-ui.html#/
https://efpf-nimble.salzburgresearch.at/api/data-aggregation/swagger-ui.html#/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 114 / 191 

based on the role that 

clients try to retrieve data. 

Figure 99: NIMBLE Services 

 DIGICOR 

This section describes the SMECluster platform, which is an instance of the DIGICOR 
platform utilising and hosting many of the SMECluster services. SMECluster provides Tools 
and Services via a marketplace available to its members and is enabled for interoperability 
with DIGICOR tools and services, demonstrating how DIGICOR tools and services can gain 
additional market exposure. The business model of SMECluster is to offer opportunities to 
collaborate between members and to support this goal through readily available technology 
that will provide productivity and quality improvements. 

SMECluster provides two different API types, a CompanyDirectoryAPI and a 
MarketplaceAPI. 
 

REST Endpoint 
(smecluster.com/api/DirectoryWebService) 

HTTP 
Method 

Description 

/GetCompany?companyID={id} GET Gets a company based upon 
the ID provided in the URL 

/GetCategory?categoryID={id} GET Gets a category based upon 
the ID provided in the URL 

/GetAllCompanies GET Gets a simplified version of all 
Companies contained in the 
database 

/GetAllCompaniesFull GET Gets a fully detailed version of 
all Companies contained in the 
database 

/GetAllCategories GET Gets all Categories contained 
in the database 

/GetAllCapabilities Get Gets all Capabilities contained 
in the database 

Figure 100: DIGICOR CompanyDirectoryAPI Endpoints 

GetCompany returns a Company object, this consists of: 
Addresses: A list of addresses associated with the company 
Capabilities: A list of capabilities associated with the company 
Categories: A list of categories associated with the company 
CompanyGuid: A unique Guid assigned to the company 
CompanyID: A unique ID assigned to the company 
Contacts: A list of contacts associated with the company 
CreatedBy: A string showing who created the Company in the database 
CreatedOn: A date-time string showing when the Company was created in the 
database 
Description: A description of the Company 
InterestedInBusiness: A Boolean value to indicate whether the Company is 
interested in business or not 
IsApproved: A Boolean value to indicate whether the Company has been approved 
or not 
Logo: A URL to the company logo 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 115 / 191 

ModifiedBy: A string showing who most recently modified the Company (if modified 
from original insert) 
ModifiedOn: A date-time string showing when the Company was most recently 
modified in the database (if modified from original insert) 
Name: Name of the Company 
NumberOfEmployees: An Integer to show how many employees are in the 
Company 
Website: A URL to the Company website 
YearsTrading: An Integer to show how long the Company has been trading 

 
GetCategory returns a Category object, this consists of: 
 CategoryGuid: A unique Guid assigned to the Category 
 CategoryID: A unique ID assigned to the Category 
 Description: A description of the Category 
 Name: Name of the Category 
 
GetAllCompanies returns a list of Company objects, this consists of: 

The same as GetCompany, except the Attributes, Capabilities and Categories are 
not returned. 

 
GetAllCompaniesFull returns a list of Company objects, this consists of: 
 The same as GetCompany, this is returned for every company in the database. 
 
GetAllCapabilities returns a list of Capability objects, this consists of: 
 CapabilityGuid: A unique Guid assigned to the Capability 
 CapabilityID: A unique ID assigned to the Capability 
 Description: A description of the Capability 
 Name: Name of the Capability 
 

REST Endpoint 
(smecluster.com/api/CatalogUtilsWebService) 

HTTP Method Description 

/GetAllProducts GET Gets all Products contained 
in the database 

/Search?searchTerm={searchTerm} GET Gets a Product/Products 
based upon the search term 
provided; the search term 
must contain a Product name 
e.g. Industreweb 

Figure 101: DIGICOR MarketplaceAPI Endpoints 

GetAllProducts returns a list of SearchModel objects, this consists of: 
CustomValues: Dictionary of KeyValue pairs defined in the web.config e.g. 
publisher 
Description: A description of the product 
ImageURL: A URL to the product image on SMECluster 
Name: Name of the product 
Price: String representation of the product price 
URL: A URL to the product page on SMECluster 

 
Search returns either a singular or a list of SearchModel objects, dependent upon the search 
term provided. It contains the same fields as the GetAllProducts api.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 116 / 191 

The SMECluster platform architecture is based on a federation of service libraries 
orchestrated via calls from the integrated workflow engine and the client web UI, as 
illustrated in Figure 102. Whilst technology agnostic, the main stack runs on Microsoft .Net 
infrastructure under IIS, currently hosted on the SMECluster dedicated server but can 
equally be hosted on a cloud infrastructure. Data storage is provided by Microsoft SQL 
Server. 

Figure 102 shows the interaction between services within the SMECluster platform, and 
those from the DIGICOR platform. 

 

Figure 102: SMECluster Component Interaction 

 vf-OS 

vf-OS was conceived as a platform to develop an Open Operating System for Virtual 
Factories. The platform comprises various components and elements as described in Figure 
103 which have many purposes, from creating a virtualisation of the factory to providing 
enabler services for accessing the factory physical and digital assets (done via device 
drivers also developed in the project), to developing applications that take advantage of all 
the richness of assets made available to create value to the manufacturing business. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 117 / 191 

 

Figure 103: The vf-OS Architecture 

The purpose of the project was to mimic an actual operating system but targeted to the 
virtual factories and its business, therefore a large number of components were developed, 
each with their documentation and APIs, which are not being adapted and made available 
in the EFPF ecosystem - s can be seen in Figure 104. 

Service Name Description Documentation URL 

vf-OS Platform Overall environment, 

platform and kernel 

• vf-Platform: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/vf-os-platform-

environment-vf-p 

Application 

Development 

(vf-OAK 

Toolkit) 

Tools for developers to 

develop vf-OS assets, 

such as vApps, Enablers, 

etc. 

• vf-OAK Toolkit: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/open-applications-

development-toolkit-vf-oak 

Application 

Services & 

Middleware 

Set of enablers that are 
able to receive stimulus 
and actuate on the factory 
elements or that virtualise 
the factory 

• Process Designer: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-

system/middleware/process-enabler---runtime 

• Messaging and Publish/Subscribe: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/middleware/publish-

subscribe 

http://www.efpf.org/
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/open-applications-development-toolkit-vf-oak
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/open-applications-development-toolkit-vf-oak
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/open-applications-development-toolkit-vf-oak
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/middleware/process-enabler---runtime
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/middleware/process-enabler---runtime
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/middleware/process-enabler---runtime
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/middleware/publish-subscribe
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/middleware/publish-subscribe
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/middleware/publish-subscribe


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 118 / 191 

• Data Storage: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/data-

management/data-storage 

• Data Analytics: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/data-

management/data-analytics 

• Enablers Framework (EF): 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/io-toolkit/enablers-

framework 

• API Connectors: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/io-toolkit/api-

connectors 

• External Service Provision (ESP): 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/vf-os-platform-

environment-vf-p/-/tree/master/esp 

• Identity Management (IDM): 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-

system/control/security/identity-management 

• Authorisation Policy Decision Point (PDP): 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-

system/control/security/authorisation-policy-

decision-point 

• System Dashboard: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/vf-os-platform-

environment-vf-p/-

/tree/master/systemDashboard 

Application 

Deployment 

Services 

Set of components that will 

be taken into consideration 

when the vf-OS 

environment is going to be 

in use 

• Marketplace Services: vf-Store: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/marketplace-vf-store 

• FIWARE Generic Enablers: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/vf-os-assets/fiware-

generic-enablers 

http://www.efpf.org/
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/data-management/data-storage
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/data-management/data-storage
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/data-management/data-storage
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/data-management/data-analytics
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/data-management/data-analytics
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/data-management/data-analytics
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/io-toolkit/enablers-framework
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/io-toolkit/enablers-framework
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/io-toolkit/enablers-framework
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/io-toolkit/api-connectors
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/io-toolkit/api-connectors
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/io-toolkit/api-connectors
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/esp
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/esp
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/esp
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/identity-management
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/identity-management
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/identity-management
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/authorisation-policy-decision-point
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/authorisation-policy-decision-point
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/authorisation-policy-decision-point
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/control/security/authorisation-policy-decision-point
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/systemDashboard
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/systemDashboard
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/systemDashboard
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-platform-environment-vf-p/-/tree/master/systemDashboard
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/marketplace-vf-store
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/marketplace-vf-store
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/fiware-generic-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/fiware-generic-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/fiware-generic-enablers


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 119 / 191 

• Manufacturing Enablers: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/vf-os-assets/fiware-

manufacturing-enablers 

• vf-OS Enablers: 

https://engagementhub.caixamagica.pt/virtual-

factory-operating-system/vf-os-assets/vf-os-

enablers 

Figure 104: vf-OS services 

 API Management 

API management is the process that is concerned with creating, publishing, monitoring and 
securing the APIs in an ecosystem. EFPF project offers various tools for effectively 
managing the APIs of services in the EFPF ecosystem.  

Lifecycle Management of APIs 

As discussed in Section 3.1, API specification standards are used to create API specification 
documents for services. These API specification documents need to be stored in a 
repository and made retrievable. The Service Registry (Sections 2.1.3 and 2.2.3) component 
of the Data Spine provides this functionality. It provides an API for lifecycle management of 
services. A service object can have many APIs and each API has an API spec that can be 
stored in the Service Registry. The Service Registry provides a functionality to browse 
through the services and their API specs and to retrieve metadata and the API spec for a 
particular service. It also provides a service filtering API that can be used to search for 
services and their APIs based on functional or technical metadata. 

The creation of a simple GUI for easily browsing through, viewing and searching for API 
specs of services is in progress. It is planned to have this GUI integrated into the EFPF 
Portal. 

Monitoring of APIs 

The monitoring of APIs can be for multiple reasons: for detecting failures/unavailability of 
API endpoints, for collecting various usage statistics for APIs and analysing those to 
examine the performance, to generate reports, etc. 

The Service Registry makes use of ‘heartbeat’ like mechanism to ensure availability and 
reachability of services. Every service has an associated ‘ttl’ (Time to live) and the registered 
services are obliged to update themselves within the ttl timeframe. If a particular service isn't 
updated within the set ttl, it is removed from the Service Registry. The minimum value for ttl 
can be 1 second and the maximum value will be decided soon. The reasoning behind having 
the ttl field and a max value for it is twofold: 

1. Keepalive: ttl serves as a keepalive mechanism to detect failures/unavailability of 
registered services. If a service fails to update itself within the ttl timeframe, it is 
concluded to be unavailable. 

2. Provider-consumer contract: In a system if there is no tool in place to detect interface 
updates and to enforce interface-contracts, ttl also serves as the de facto contract 
mechanism between the service provider and consumers. So, the responsibility of 
checking updates to a service's interface is offloaded to the service consumers, who 

http://www.efpf.org/
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/fiware-manufacturing-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/fiware-manufacturing-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/fiware-manufacturing-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/vf-os-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/vf-os-enablers
https://engagementhub.caixamagica.pt/virtual-factory-operating-system/vf-os-assets/vf-os-enablers


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 120 / 191 

should retrieve the service from the Service Registry after every ttl time period to 
detect changes/updates, if any. This has been replaced in EFPF with the Interface 
Contracts Management Tool presented in Section 3.4.2. 

A new monitoring tool is currently being developed in EFPF that will have the capabilities to 
monitor APIs for ensuring their availability, for collecting usage stats such as API calls per 
hour, for example, and performance factors such as latency, uptime, request processing 
time, etc. and for visualising these statistics and for generating alerts. More details about 
this tool can be found in deliverable D7.1. 

Securing Access to API Endpoints 

The access to API endpoints in EFPF ecosystem is secured with the access policies defined 
in the EFS and it is enforced with the help of the API Security Gateway component of the 
Data Spine. 

 Interface Contracts and Their Management 

This Section introduces API contracts, the governance policies for API contracts and a new 
tool that track changes to APIs of services to ensure conformance with the defined policies. 
The interface contracts between EFPF and base platforms were specified in D3.1. 

3.4.1 Introduction 

APIs are the contracts between service providers and service consumers. APIs allow the 
service consumers to know the technical capabilities of a service and how to interface with 
it without access to source code, documentation, etc. Thus, in a federated ecosystem such 
as the EFPF ecosystem, the involved parties i.e. the service providers and the service 
consumers rely on the agreed API Contracts or Interface Contracts for communicating with 
each other. However, as the participant services evolve, the upgrades of APIs becomes 
necessary and inevitable. Therefore, the federated ecosystem should define Interface 
Contract policies that allow the Service Providers to convey plans to deprecate/upgrade their 
APIs to the service consumers in advance allowing a smooth transition/collaboration. The 
definition of such Interface Contract policies for EFPF is in progress and can be found in 
D7.1. 

3.4.2 Interface Contracts Management Tool 

The Interface Contract Management Tool (ICMT) is a custom component under 
development which will be used to track changes of the interfaces of the tools and services 
in the EFPF platform. This tool is independent from the Service Registry (SR) and it serves 
as an extension of it, helping developers keeping track of the software interfaces they make 
use of. 

This tool communicates with the SR through the Message Bus using the MQTT protocol. 
When a service publishes an update to its interfaces to the SR, the SR publishes a message 
to the Message Bus. This message is read from the ICMT which then checks inside its 
internal storage whether it already has any information about that service. If not it is stored, 
on the other hand if some information is found then the ICMT proceeds to compare the newly 
received information about its interfaces with the one stored. If changes to the interfaces are 
detected than the tool proceeds to warn the users about them to allow developers making 
use of those interface to take appropriate actions. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 121 / 191 

The updates are delivered through the Message Bus, however developers can check for the 
latest updates for a known service through a set of HTTP API. 

 

Figure 105: Architecture of Interface Contracts Management Tool 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 122 / 191 

4 Data Model Interoperability Layer 

 Introduction 

The objective of the data model interoperability layer is supporting information exchange 
and business processes that spread across two or more of the existing EFPF platforms. This 
happens through: 

1. A standardization effort in the data modelling topic which enables different tools and 
services to be able to exchange information. 

2. Use of policies to promote standards adoption to reduce interoperability issues. 

3. Development of tools to solve data model incompatibilities. 

4.1.1 Methodology for the Data Model Interoperability 

Two approaches have been considered for dealing with the data model interoperability 
issues, bottom-up and top-down. 

The top-down method starts from the general and moves to the specific. Using the top-down 
method requires having a detailed understanding of the system. That, in this case, would 
mean finding, right at the beginning of the project, a set of standard data models which would 
then be used for the project according to their specifications. Then, while the project 
develops, according to the feedback from the pilots, the data models can be maintained or 
swapped if they are deemed as unfit for the task. In some cases, top-down design can lead 
to unsatisfactory results because important and necessary features for the system can be 
missed. 

A first approach with a top-down method has been attempted by performing a general survey 
about all the data models used from all the tools and services that are part of the EFPF 
platform. More than the data models used this survey also collected information about data 
rate, size and format used to encapsulate the data. By looking at the results of this survey 
alone it has not been possible to make a decision since the data models discovered were 
too many and the majority were proprietary. The huge number of proprietary data models 
can be explained since most of the tools and services come from different previous projects 
which had not interoperability in mind since they were not designed as open platforms. The 
unsatisfactory results of the survey made necessary to attempt a bottom-up approach to 
have a clearer picture about the collected data. 

The bottom-up approach begins with the specific details and moves up to the general.  To 
begin a bottom-up design, the pilots representing the use cases will be investigated and the 
data models used in the tools included in the pilots will be checked. Then, the data models 
which will find the most applications or the more widespread adoption will be kept and picked 
as the standards for the platform. The disadvantage of this kind of approach is that if the 
pilots do not represent well enough all the use cases, one may end up with choosing data 
models which may exclude some scenarios. 

After examining both the pros and cons of both the approaches it has been chosen to 
proceed with a bottom-up approach due to the complexity of the data collected while 
attempting a top-down approach. This collected data however did not go to waste since it 
proved very useful while analysing the pilot scenarios as explained in the following sections. 

The steps which have been taken in the aforementioned bottom-up approach are: 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 123 / 191 

• Investigating the standard data models which are suited to the different EFPF use 
cases. 

• Exploring the tools and services included in the EFPF pilots to see whether the tools 
used the same data models found in the previous step. 

• Picking the data models used in the pilot projects as well as found in the prior 
investigation as the standard data models. 

These are instead the steps ahead: 

• Creation of policies to promote the adoption of the standard data models in the EFPF 
ecosystem. 

• Development of tools for integrating the standard data models with any proprietary data 
model used. 

• Validation of work through an analysis of the adoption of the standard data models 
during the open call phase. 

Choosing to use a set of standard data models on the Data Spine can be interpreted as 
using a one-to-one approach when dealing with data model incompatibilities, rather than 
using a one-to-many approach in which each tool / service has to directly deal with all the 
data models used from the other tools / services. 

 

Figure 106: Use of Standard Data Models through a Data Model Transformation Tool 

An example is provided in the scenario shown in Figure 106. In this scenario there are 4 
linked services all using different custom data models. The interoperability for these services 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 124 / 191 

is provided from the Data Model Transformation Tools which receive the data encoded with 
the respective custom data models from the Message Bus, translate it to the EFPF chosen 
standard data model and then push it back to the Message Bus. Then this data is captured 
from another Data Model Transformation Tool which encodes it to the destination service’s 
custom data model, pushed back to the Message Bus and eventually consumed from the 
service. The advantage of this approach is that if a change is made to one of the custom 
data models of one of the services, only the Data Model Transformation Tool in charge of 
dealing with translating that data model from / to the EFPF standard data model will need to 
be updated. The change will be transparent for all the other Data Model Transformation 
Tools which will still be consuming data encoded with the unchanged standard data model. 
Otherwise, if the Data Model Transformation Tool provided custom data model to custom 
data model translation rather than using a central standard data model, all the Data Model 
Transformation Tools of the other services would need to be updated according to the new 
specifications of the changed data model. 

4.1.2 Reference Models 

In this subsection, the main domains relevant to EFPF are introduced along with candidate 
data models and standards that are relevant for each domain. 

The following overview will help in selecting the data models that satisfy majority of the EFPF 
ecosystem needs in term of data exchanged between its components and platforms. 

 Industrial IoT and Industry 4.0 

Industrial Internet of Things (IIoT) involves interconnected things networked together with 
applications, services, and people. The connectivity permits data collection, analysis, 
improved efficiency, and tapping into the potential of data value. Things refers to the 
semantic representation of a cyber-physical system, i.e., IoT devices embedded with 
electronics, software, sensors/actuators, and connectivity to enable objects to exchange 
data with the services, applications, people and/or other connected devices. Usually IIoT 
scenarios are linked to manufacturing; however, IIoT is brother field that comprises multiple 
vertical markets such as energy, finance, healthcare, industrial, residential, retail and 
transportation according to oneM2M and ETSI standard bodies. In EFPF, some pilot 
scenarios fall into the IIoT domain mainly in the industrial vertical market such as the “bins’ 
fill level monitoring” or the “working environment monitoring” scenarios. Those scenarios are 
reflecting the pilot topics and will be described more in depth in a following deliverable. The 
goal is to enable interoperability during the data exchange process; therefore, potential 
candidate standards relevant in the IIoT domain are studied and analysed to see their 
suitability for EFPF pilot scenarios. The candidate standards are: 

• OGC Sensor Web Enablement (SWE) initiative: OGC SWE goal is to establish 
interfaces and protocols that enable "sensor web" so that applications can access 
sensors and their observations over the web. The SWE standards include: 

1. Observation Measurement (O&M) [OAM20]: provides standard models and 
XML Schema for encoding observations and measurements from a sensor 
(user-centric view) 

2. SensorML [SML20]: provides standard models XML Schema for describing 
sensors and measurement processes (provider-centric view) 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 125 / 191 

3. Sensor Observation Service (SOS) [SOS20]: defines a web service interface 
that allows querying observations, sensor metadata, and representation of 
observed features 

4. Sensor Planning Service (SPS) [SPS20]: defines a web service interface for 
queries that provide information about sensor capabilities.  

5. SensorThings API [STA20]: defines an open OGC API that allows managing, 
storing, sharing, and analysing IoT-based sensor observation addressing the 
syntactic and semantic interoperability between IoT devices and services.  

• Web of Thing - Thing Description (TD) [WTD20]: allows semantic description of 
things and provides a set of interactions based on a small vocabulary to interface with 
things. TDs are encoded in a JSON format that allows JSON-LD processing and 
defines the following aspects: 

1. Semantic metadata: provides a generic and context enriched information 
about a Thing 

2. Thing’s interaction resources describes properties, actions, and events 

3. Security: describes the prerequisite to access Things 

4. Communication: defines the protocols, data exchanged formats, and bindings 
to an interaction resource supported by a Thing. 

• OPC UA Part 100: Devices [OUD20]: is a companion specification that features an 
information model for devices and is based on the OPC UA information model 
framework. The device model provides a model to identify device type through 
properties such as serial number, model, and device type. It also allows the 
organization of parameters and commands of a device, the grouping of devices, 
usage of device interface type (i.e. VendorNameplate Interface and DeviceHealth 
Interface), alarm handling, initial device set up (i.e. device security), and physical and 
logical network representation among others.   

 Supply Chain and Logistics 

In transportation, and also part of the circular use case, the “BiTAS Std 120-2019: 
LOCATION COMPONENT SPECIFICATION” [BIT19] and “BiTAS Tracking Data 
Framework Profile” [BTD20] from Blockchain in Transport Alliance Standards Council 
(BiTAS) are the main candidates. It is a recently developed data model and format for events 
and data regarding shipment and transport. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 126 / 191 

 

Figure 107: Tracking Entity Model (Blockchain in Transport Alliance Standards Council 
(BiTAS)) 

EPCIS [EPC20] is a GS1 [GS120] standard using Electronic Product Code (EPC) data, 
which is used for the track & trace feature in the NIMBLE base platform to share product 
movement and business process events status. It will also be used in the blockchain pilot.  

UBL has been mentioned by pilot partners as a candidate to externally represent proprietary 
ERP system schemas. 

 Data Models - Ongoing Activities 

The goal of data model interoperability is to enable an information exchange between 
applications that use different models to encode data. According to RFC 3444 [RFC34], 
Data Models define data objects at a lower level of abstraction and include implementation- 
and protocol-specific details. Application developers use data model specification as a 
reference how to encode data structures before they can be exchanged with other 
applications. Those specifications can include recommendations for data serialization 
formats, i.e. XML, JSON, or CSV, as well as descriptions to convert internal data structures 
to the chosen serialization format.  

Different application developers use different models to encode their data due to several 
reasons, e.g. different implementation frameworks or data exchange protocols. This is very 
often the case when the interacting applications exist in different domains. Every domain 
has its unique requirements and therefore its own tools, standards, and concepts to support 
the execution and operation of applications. Figure 108 gives an overview of the previously 
introduced data models that are common for the presented domains.  

Besides the two scenarios presented more in depth, it is worth mentioning the Platform 
Marketplace scenario. This scenario has not been investigated in depth since the pilots have 
not made significant progress yet. However discussions have been performed and an early 
agreement has been reached on UBL as data model worth investigating for this scenario. 

Domain Common data model 

Industrial IoT, Industry 4.0 O   OGC SensorThings API 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 127 / 191 

W3C WoT TD 

OPC UA Part 100 

Supply Chain & Logistics BITAS 

GS1 - EPCIS 

Platform Marketplace UBL 

Figure 108: Overview of previously introduced data models from different domains 

The task of data model interoperability is to ease a translation between different models by 
selecting standards that would be supported by the EFPF platform. On technical level, this 
means to convert data from services of external or base platforms to the EFPF standards 
and models. Therefore, we investigated the different domains that are relevant for EFPF 
and pre-selected common standard models as presented previously. Furthermore, an 
analysis of the single pilot scenarios was conducted (Section 4.2) in order to check the 
models for applicability. However, this remains an on-going activity with some results 
already becoming available for use in the project.  

 Pilot Scenarios Analysis 

The goal of this section is to present an overview of different pilot scenarios with a focus on 
data model used in each of them. This is done to put the basis for a subsequent analysis of 
overlaps, conflicts or compatibility between different data models. This work has been done 
by combining the surveys collected about the data models used from tools and services with 
the pilot applications. This study will result in a final evaluation that will aim at solving the 
issues coming from the heterogeneity of data models used by the different pilots, selecting 
a subgroup of them to be adopted as reference in the EFPF platform. All the EFPF internal 
communications will be aligned with the reference data models by using translation modules. 

4.2.1 Working Environment Monitoring 

The purpose of the working environment monitoring scenario is to monitor in (soft) real-time 
a working environment using IoT devices. The working environment could be an office 
building composed of offices and meetings rooms, a manufacturing shop floor where 
production process occurs, or a warehouse where materials and parts are stored. Various 
aspect can be monitored in a working environment depending on the working environment 
and the needs of users. Some of the aspects that can be monitored are air quality, energy 
consumption, space utilization, safety, and comfort.  

In the working environment monitoring scenario, an example use case is presented to 
identify and illustrate the type of data exchanged between EFPF solutions and Data Spine. 
The diagram bellow shows the EFPF tools and services involved in the “temperature, 
humidity and air quality monitoring in the shop floor” use case as well as the data exchanged 
between them. In this use case, the actor is the production line manager who wants to 
monitor the temperature, humidity and air quality values of the production area where milling 
machines are located so that the machine parameters can be adjusted when the values are 
beyond the threshold. Thus, the production manager specifies the threshold values for each 
area then informs the actor via SMS, email, or notifications when the threshold is reached.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 128 / 191 

 

Figure 109: Illustration of the EFPF services involved in the temperature, humidity and air 
quality monitoring in the shop floor use case 

In the use case described above, HAL connector, TSMatch gateway/application, and the 
event reactor service are using different models, which makes the integration process 
difficult and time consuming; therefore, the objective is to build model transformation 
“translator” to ease and improve interoperability between the services. The translators are 
responsible for transforming the models used by the services to the specified EFPF standard 
for the domain.  

4.2.2 Bins’ Fill Level Monitoring 

This use case focuses on the detection of bin and container fill levels and the calculation of 
the optimal route for collecting shop-floor bins. The sensors provide early (real-time) 
notification of the recyclable and scrap bins fill levels and suggest optimal routes for 
collecting bins within the factory. Overall, minimization of the total distance from bins to 
container and improvements in containers’ fill level management are expected. 

The Scrap and Recyclable Waste Transportation is triggered by a full bin in the shop-floor. 
For the Prediction engine to be able to estimate and propose the optimal path to follow for 
the transportation of waste to a central bin outside the production line, a fill level sensor for 
the internal bins has to be designed and developed.  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 129 / 191 

An IR distance sensor should be chosen for the indoor bins, mostly because weight sensing 
would require a complex mechanical solution. Low power friendliness of sensors has also 
to be taken into account, therefore LoRa LPWAN is the most suitable solution due to its 
“lightweightness” and low power needs. 

A board with a Lora communication module is needed to push information towards the data 
collection framework. The sensors take raw distance measurements from their position to 
the surface of the waste over a fixed time period. This data is then processed and translated 
to fill percentage and sent to the platform. 

Fill percentage is displayed in real time to scrap collectors or waste management staff in 
order to plan the collection process. If this value exceeds a certain threshold, an event is 
automatically triggered (i.e. a bidding process for the scrap or finding optimal routes for 
waste collection).  

 

 

Figure 110: EFPF services involved in bins fill level monitoring 

As in the previous use case, HAL connector and the Event Reactor service are using 
different models, which makes the integration process difficult and time consuming; 
therefore the HAL connector is using OGC-ST standard, one of the data models that could 
possibly become reference in the EFPF platform.  

Event Reactor uses a data model derived from OGC-ST data instead. To overcome the data 
model difference a translation will be applied exploiting NiFi translator modules at Data 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 130 / 191 

Spine level. By doing so, the data model used into the Data Spine will be the reference one, 
that will be translated once a different data model needs to be output or input.  

4.2.3 Production Optimisation Pilot 

In the Production Optimisation Pilot factory connectivity solutions are used to improve the 
efficiency of an edge banding machine by displaying clear instructions to the operator to 
avoid mistakes being made and to predict when preventative maintenance will be required. 

The first topic of the pilot, provisioning of instructions to the operator, the EFPF Data Spine 
is not used since all the data flows happen outside of it, thus it will not be considered in the 
scope of this deliverable. 

 

Figure 111: Use of EFPF Data Spine from Production Optimization pilot 

In the second topic, providing risk forecasting and predictive maintenance solutions, the pilot 
makes use of the Data Spine by sending readings from sensors located in the bending 
machine to the analytics tools which will output information about risk and fault forecasting.  

The Industryweb Factory connector provides a MQTT digital interface for the analogical 
readings provided from the different (temperature, current, etc.) sensors installed on the 
physical machine. These readings can be referred to as machine KPI data. This data is then 
fetched from the tools which make use of those from the MQTT broker. In order to provide 
interoperability between the Industryweb Factory connector and the tools making use of its 
data it is necessary to analyse the data models used from both the Industryweb Factory 
connector and the tools. In case those are found to be different, multiple translators to/from 
a given standard data model will be developed. These translators will also be useful in case, 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 131 / 191 

in the future, different tools will be added to the pilot to provide access to the machine KPI 
data without breaking the existing flows. 

At the moment, due to the pilot still being under development the data model used from the 
Industryweb Factory connector is not yet finalized so it will be considered as custom and not 
standard. 

For what concerns the Risk Analysis component, it uses a proprietary custom data model. 
To fetch the data needed to perform the risk assessment from the MQTT broker a translator 
to its custom data model will need to be developed, due to the aim of keeping the data 
models used in the Data Spine standard. 

About the predictive maintenance service, provided form the Deep Learning Toolkit 
component, a translator will be developed only in case the standard data model used in the 
Data Spine for machine KPI data is different from the OGC-SensorThings standard, which 
is used from the aforementioned component. 

4.2.4 Tendering and Bid Management 

The opportunities portal will give SMEs a chance to offer their services for income generating 
opportunities. This service will be aimed at industrial/manufacturing SMEs specifically, as 
an example an automotive SME selling brake drums. 
Tender and Bid Management or opportunities portal will be separated into three main 
components: a company directory, where businesses can choose to share their profile with 
a breakdown of what they offer and more; a business opportunity board, that will include 
tenders, small work opportunities and allow suppliers to submit applications; along with a 
messaging system. This will assist procurers and suppliers to find business better.  
There will be a range of different data collected through this portal, from the business 
opportunities themselves to the personal data and company information from both suppliers 
and procurers registered. The Tender and Bid Management platform will not follow any 
standards due to the bespoke nature of the information needed, and a lack of suitable 
standards that could be applied to these needs. 

4.2.5 Supply Chain Transparency (WASP) 

The supply chain transparency pilot scenario aims to provide end-to end transparency for 
production process monitoring in a supply chain. The objective of the pilot is to provide live 
visualization at a glance and end to end visibility of the production process. The system can 
also send status updates for e.g. orders and warnings if a problem is detected at some step. 
The scenario is based on the JIRA user stories EF-19 and EF-303. The main component 
in the pilot is the Workflow and Service Automation Platform (WASP) tool. WASP allows 
uses to design, execute and monitor distributed workflows and service orchestration using 
Business Process Model and Notation (BPMN) graphical representation. 

The information needed to model the processes can be found in the Enterprise Resource 
Planning and it needs to be published to the message broker to be used from WASP. 
Translators on the Integration Flow Engine ensure interoperability between different data 
models. The processes are then executed in the workflow engine and status and information 
from distributed (supply chain) activities taking place across multiple facilities is displayed 
on a dashboard. 
 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 132 / 191 

 
Figure 112: Supply Chain Transparency 

 

Figure 113: BPMN Process Visualization. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 133 / 191 

4.2.6 Blockchain and Smart Contracting 

The Blockchain and smart contracting pilot deals with order management, transportation 
and circular economy. The blockchain infrastructure itself it is not expected to expose any 
standards to the Data Spine, it will use domain standards to represent data and adopt the 
blockchain frameworks to store transactions using this data. The BiTAS data model and 
format will be used in the blockchain shipping applications, and EPCIS in the order 
processing. The only information expected to make use of the Integration Flow Engine 
data model translators at this stage is the Enterprise Resource Planning data which needs 
to be published to the message broker to be used from WASP. 

 

Figure 114: Blockchain DApp Data Spine use. 

4.2.7 Matchmaking 

EFPF platform federated search and associated matchmaking functionality requires a 
standard interoperable data model to define the metadata related to the suppliers and their 
products and services from different base platforms in EFPF. For this purpose, an EFPF 
matchmaking ontology is defined namely EFPF Manufacturing Ontology (EFONT).  
COMPOSITION, SMECluster, NIMBLE and other platforms connecting to EFPF uses their 
own metadata structure to define their value-units. These value units can be identified as 
service providers, products and services offered by the base platforms.  

The metadata of these value units can be structured with the following concepts of EFONT 
ontology at a high-level.  The concepts and their attributes defined are inspired by the 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 134 / 191 

Universal Business Language (UBL)11 specifications on Supplier PartyType and 
CatalogueType.  

• A Class / Category of a product/ service/ partner’s capability has 0 or more properties, 

• A Property describes the product/service class in detail, e.g. length, height, certificates, 

• An Item is an instance of a Class / Category. Each Class / Category has 1 or more item 
instances representing the actual product/service or partner’s capability that will be 
manufactured/ provided by a party/ company, 

• A Party has attributes such as a legal-name, keywords and activity sector that extend a 
variety of attributes for matchmaking processes.    

 

Figure 115: A High-Level View of the EFPF Manufacturing Ontology 

Above figure depicts how these concepts are related in the ontology. We extended the 
above ontology with more attributes which will be useful for matchmaking transactions. The 
additional relations/attributes were added mainly to the Item and Party concepts by 
analysing the different schemas used across the base platforms. More details regarding 
matchmaking data models and data flow are discussed in D5.1.  

4.2.8 Conclusions from Pilot Scenario Analysis 

The result from pilot analysis is that use cases are clearly distributed in quite different 
domains, as previously identified in Section 4.1.2. 

The first two pilot scenarios “Working environment monitoring” and “Bins’ fill level 
monitoring” have been included in “Industrial IoT and industry 4.0” and both pilots are 
focused on gathering data from the physical environment and send it to servers that will 
perform operations on this data. 

Looking at these two pilots it is clear that the common data model is represented by OGC 
and other two custom data models used by the Event Reactor and TSMatch application. In 
this case the best solution will be to use the OGC data model as reference one and create 

 
11  http://www.datypic.com/sc/ubl21/ss.html  

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 135 / 191 

translation modules to enable the components that use custom data models communicate 
in the Data Spine context. 

To be mentioned in this category there is also the “Production Optimisation Pilot” that make 
use of OGS standard for the Deep Learning Toolkit component and custom data models for 
the others. 

For “Supply Chain and Logistics” domain we can find the “Supply chain transparency” and 
“Blockchain and smart contracting” pilots. In these cases there is a wide selection of 
standard models specifically oriented to the use cases like BiTAS and GS1- EPICS. In this 
context it is difficult to identify a reference data model that will cover general needs of the 
platforms.  

Regarding “Platform Marketplace” domain, there are different customs and evolving data 
models used to exchange information. UBL probably will be used as reference in business 
domain and in future developments will be clarified if can be useful to cover all EFPF platform 
needs. 

 Data Model Interoperability Tools 

As stated in the previous subsections, the EFPF platform is a collection of smart tools and 
services that aim to cover the complete lifecycle of production and logistic processes. Also, 
the EFPF ecosystem aims at standardizing the data models used to describe the data 
exchanged between these tools and services. However, it is to be expected, even in the 
best possible scenario, that some tool can come with proprietary data models that make 
their integration with other tools and services a hard job.  

To solve this problem, two routes can be followed, upgrade the tools to use one between 
the proposed EFPF data models, or make the tool interoperable by translating the data 
produced or consumed from that tool on the fly. 

The first option is to be preferred since standardization right at the source would bring the 
most advantages, however this is not always applicable. An example is a tool already 
integrated in a process, its upgrade to a standard data model could lead to a service 
disruption. In this case it is better to proceed with a data model transformation outside from 
the tool. These data model transformations are completely transparent from the tools’ point 
of view and can happen both on the Integration Flow Engine and outside from it on dedicated 
infrastructure. 

4.3.1 JOLT 

Jolt (JsOn Language for Transform) is a JSON to JSON transformation library written in 
Java [JGH20]. The Jolt specification (spec) for performing the transformation is also written 
in the form of a JSON document. Jolt provides a set of transforms as illustrated in Figure 
116 and each transform has its own Domain Specific Language (DSL) to specify the 
transform concern. These transforms can be used to transform the structure of JSON data. 
The inclusion of several ‘wildcards’ into the DSL of the shift transform make it the most 
powerful among these enabling it to perform about 80% of the transformation work.  

Transform Description/Purpose 

shift To copy data from input to desired place(s) in the output JSON tree 

default To add default values to the output JSON tree 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 136 / 191 

remove To remove data from the tree 

sort To sort the Map key values alphabetically for debugging purposes 

cardinality To "fix" the cardinality of input data.  E.g., the "urls" element is usually 
a List, but if there is only one, then it is a String 

java To perform value transformation through Java code 

Figure 116: Jolt Stock Transforms 

These transforms can be chained together to form the complete transformation spec. Figure 
117 shows an example of Jolt transformation with input and output JSON documents, and 
the Jolt spec that chains together shift and default operations together to perform the 
transformation. 

 

Input Output Jolt spec 

{ 
  "temperature": 25, 
  "humidity": 81, 
  "wind": 14, 
  "precipitation": 51, 
  "location": "Bonn", 
  "timestamp": "2020-06-
04T13:49:00.4096331Z" 
} 

{ 
  "weather-data" : { 
    "temperature" : 25, 
    "humidity" : 81, 
    "wind" : 14, 
    "precipitation" : 51, 
    "location" : "Bonn", 
    "timestamp" : "2020-06-
04T13:49:00.4096331Z" 
  }, 
  "attributes" : [ 
"temperature", "humidity", 
"wind", "precipitation", 
"location", "timestamp" ], 
  "metric-system" : "custom" 
} 

[ 
  { 
    "operation": "shift", 
    "spec": { 
      "@": "weather-data", 
      "*": { 
        "$(0)": "attributes" 
      } 
    } 
  }, 
  { 
    "operation": "default", 
    "spec": { 
      "metric-system": 
                 "custom" 
    } 
  } 
] 

Figure 117: Jolt Transform Example 

The downside of Jolt is that it is not Turing complete i.e., not every aspect of data 
transformation can be achieved with Jolt. Jolt can be used to perform structural 
transformations on data but not manipulate values. Java code needs to be written to perform 
value transformations. Jolt is certainly not intuitive, but easier to learn as compared to some 
other data transformation tools/languages such as XSLT. Having lesser options helps to 
keep it simple. Thus, there is a trade-off between ‘ease of use’ and transformation 
‘coverage’.  

The documentation for Jolt is comprehensive enough for the functionality it offers. In 
addition, in order to learn Jolt, a Jolt playground [JPG20] is also available. Apache NiFi, the 
dataflow management platform that is used to realise the Integration Flow Engine of the 
Data Spine contains Jolt as a processor [JNF20]. Therefore, it can be easily added to an 
integration flow to perform data transformation. 

4.3.2 XSL Transformations (XSLT) 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 137 / 191 

XSLT12, a WC3 standard, is a language for transforming XML documents into other XML 
documents. It is used in conjunction with XPath 2.0 to write rules to match parts of a parsed 
XML document and compile a new XML document. However, since a JSON to XML 
conversion is part of the specification and the rules can define functions and use regular 
expressions, it is applicable for other formats as well. E.g. Avro can be converted from binary 
to JSON and then to XML for transformation by XSLT.  (Any text representation can be 
generated, as long as it is included between two XML root elements.) CNet have experience 
building integration software for the AdsML13 standard using libraries of XSLT 2.0 
transformations. XSLT transformations can use imports, so libraries of rules can be imported 
and re-used. Partial support for transformation of a set of standards can be built and 
extended in a modular fashion, gradually covering more and more of the schema in a value 
co-creation process. The XSLT transformation documents can be version managed using 
e.g. Git or other tools. There are scripting capabilities and regular expression support in 
some environments. 

Factors that speak against XSLT and XML are that today, it is not as widespread as e.g. 
JSON is and there may not be a large base of developers familiar with it. That all 
transformations must start and end in valid XML is also a limitation that needs to be 
circumvented using the above methods. 

The TransformXml processor in NiFi transforms the XML payload using the provided XSLT 
file.  

4.3.3 ExecuteScript 

ExecuteScript [ES20] is a processor provided by Apache NiFi that facilitates users in writing 
a script for performing data transformation. It takes data input in the form of a FlowFile – the 
data serialization format used by NiFi, processes it as specified in the script and finally 
generates another FlowFile as output that contains the transformed data. The languages 
supported for writing the data transformation script are Clojure, ECMAScript, Groovy, Lua, 
Python and Ruby.  

Figure 118 illustrates an example where a Python script is used to perform the data 
transformation. 

ExecuteScript: Data transformation with a Python script 

Input { 
  "userId": 1, 
  "id": 18, 
  "title": "lorem ipsum", 
  "completed": false 
} 

Output { 
  "completed": true, 
  "title": "lorem ipsum" 
  "userId": 19, 
  "id": 18 
} 

Python 
Script 

import json 
from org.apache.commons.io import IOUtils 
from java.nio.charset import StandardCharsets 
from org.apache.nifi.processor.io import StreamCallback 
 

 
12 https://www.w3.org/TR/xslt/all/ 
13 https://www.adsml.biz/ 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 138 / 191 

class PyStreamCallback(StreamCallback): 
def __init__(self, flowfile): 
 self.ff = flowfile 
 pass 
def process(self, inputStream, outputStream): 
 text = IOUtils.toString(inputStream, StandardCharsets.UTF_8) 
 tmp = json.loads(text) 
 tmp['userId'] = tmp['userId'] + int(self.ff.getAttribute('value')) 
 tmp['completed'] = not tmp['completed'] 
 text = json.dumps(tmp) 
 outputStream.write(bytearray(text.encode('utf-8'))) 
 
flowFile = session.get() 
if (flowFile != None): 
 flowFile = session.write(flowFile, PyStreamCallback(flowFile)) 
 session.transfer(flowFile, REL SUCCESS) 

Figure 118: ExecuteScript Example 

The ExecuteScript processor has the following shortcomings: 

1. The main concern is with the engine of Python is that the processor uses Jython, the 
Java implementation of Python, as opposed to pure Python. Therefore, the packages 
that can be installed and used need to be written in pure python. Also, the path of these 
modules needs to be set in the configurations of the Processor.  

2. For NiFi to reload the modified version of a script, the ExecuteScript processor that runs 
it needs to be restarted. 

3. It is extremely difficult to test and debug. 

4. As per the official documentation of NiFi, this processor is experimental and therefore, 
the impact of sustained usage not yet verified. 

4.3.4 Ad-Hoc Microservices 

A custom microservice is an option which can be used in case all the previously listed 
options are not applicable because of any reason.  

When using this solution, the data is fetched from the Integration Flow Engine of the Data 
Spine from a custom developed and maintained component which is hosted outside from 
the Data Spine. Once there the data can be transformed from a custom to a standard data 
model. This process can be performed using a framework of choice from the developers 
without the need for it to be supported from the Integration Flow engine. Once transformed 
the data can be then pushed back to the Data Spine to be used from other services. 

This option has the obvious advantage of not being tied to the Integration Flow Engine so, 
in case of a replacement of the framework behind it. There will not be the need to replace 
the data model translation tool with it. Moreover, as stated before, it can use any framework 
of choice of the developer in charge of maintaining it. 

The main disadvantages of this solution are: 

1. The increased complexity in development for getting and pushing data from / to the 
Integration Flow Engine. 

2. Increased delay added to the data flow from the source to the destination due to the 
added possible network delays. 

4.3.5 Summary and Future Work 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 139 / 191 

Three different data model transformation tools that are integrated in the Integration Flow 
Engine of the Data Spine tools facilitate the system integrator user in writing the data 
model/schema mapping rules or source code for data transformation that is specific to the 
interaction between a particular pair of services. Each tool has its own advantages and 
limitations - for some tools, there is a steeper learning curve (e.g. XSLT); for others, they 
accomplish most of the required transformation, but are not Turing complete (e.g. Jolt).  

On the downside, the data transformation process remains largely manual. In addition, in 
order to write rules or source code for data transformation, the system integrators need to 
know the semantics for the data. However, there is no system available to capture the 
semantics of the data to be transformed and guide the user while writing the data 
transformation rules. A new ‘Data Model Transformation Tool Suite’ is being designed to 
address these problems. Section 3.2.3 in the deliverable D4.1 describes this tool in detail. 

In conclusion, the system integrator users are provided with tools that offer a diverse range 
of options for performing data transformation and efforts are being made to ensure that the 
data transformation process becomes easier, faster and more accurate in the future 

  Future Work on Data Model Interoperbility 

Pilot analysis has highlighted different issues: some easily solvable with the adoption of a 
reference data model and a set of custom data models derived or related from the reference 
one, making the job of translating easy; others with a wider set of possibilities hardly solvable 
like in the previous case. 

After this first phase of pilots and data models evaluation, the system integrator users in 
EFPF project will be provided with a set of data models to be used as reference and a set 
of tools provided by the Integration Flow Engine of the Data Spine to perform data model 
transformation. 

As next steps of task T3.5 will be developed a set of translators to integrate each pilot with 
the Data Spine according to guidelines given by pilot scenario analysis and data model 
selection. After this phase the translators will be tested in pilot contexts to validate them. 

http://www.efpf.org/


 European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 140 / 191 

5 Conclusion and Outlook 

In this deliverable, the current state of design and realisation of the Data Spine, the update 
to the architecture of the EFPF ecosystem, the APIs for tools, services, systems and 
platforms of the EFPF ecosystem and data model interoperability layer were presented. 

The Data Spine is already capable of integrating synchronous as well as asynchronous 
services through it and enable communication in the EFPF ecosystem. It bridges the 
interoperability gaps between services at the levels of security, communication protocol and 
data model and already provides the protocol connectors and data transformation tools 
required at this stage. The next steps are creating more documentation and tutorials to 
explain service integration through the Data Spine from the perspectives of service providers 
and service consumers, enhancing the levels of automation for design-time configuration, 
enhancing security integration, ensuring high availability and high throughput, etc. The 
abstract architecture and realisation of the Data Spine presented in this deliverable will be 
subsequently developed and enhanced based on the identification of new requirements. 

The APIs of the tools, services, systems and platforms that constitute the EFPF ecosystem, 
the API management and Interface Contracts management mechanisms would be 
developed and enhanced further as well.  

The data model interoperability layer, after the first phase of pilots and data models 
evaluation, will provide the system integrator users in EFPF project with a set of standard 
data models to be used as reference. The system integrator users are already provided with 
tools that offer a diverse range of options for performing data transformation and efforts are 
being made to ensure that the data transformation process becomes easier, faster and more 
accurate in the future. 

Finally, the implementation of EFPF pilots’ use cases followed by the Open Call 
Experimentation would provide a great opportunity for the evaluation of the architecture and 
the implemented infrastructure, for discovering new requirements and, enhancing and 
strengthening the EFPF ecosystem even further. 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 141 / 191 

Annex A: History 

 

Document History 

Versions 

V1.0 

• Final version of the document 
V0.8 

• Address internal review comments 
V0.7 

• Sent for internal reviews 
V0.4 – V0.6 

• Collection of contributions from partners 

• Preparation of a consolidated document, formatting 
V0.3 

• Restructured Sections 2.2 and 3.2 
V0.2 

• Creation of internal structure 
V0.1 

• Creation of main Sections 
 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 142 / 191 

Contributions 

FIT: 

• Rohit Deshmukh 

• Alexander Schneider 

• Vinoth Pandian 
ICE: 

• Usman Wajid 
SRFG: 

• Violeta Damjanovic-Behrendt 

• Nirojan Selvanathan 

• Dileepa Jayakody 
ASC: 

• Norman Wessel 

• Brian Clark 
VLC: 

• Happy Dudee 
CNET: 

• Mathias Axling 

• Matts Ahlsen 
CERTH: 

• Alexandros Nizamis 

• Dimosthenis Ioannidis 

• Ioannis Iakovidis 

• Terzi Sofia  
C2K: 

• Simon Osborne 
NXW: 

• Alì Nejabati 
ALM: 

• Carolyn Langen 

• Carlos Hermans 
AID: 

• Fernando Gigante 
FOR: 

• Nisrine Bnouhanna 

• Hendrik Walzel 
SRDC: 

• Senan Postaci 
LINKS: 

• Edoardo Pristeri 

• Jure Rosso 
CMS: 

• Carlos Coutinho 
 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 143 / 191 

Annex B: References 

[Mor10] Morrison, J. Paul. Flow-Based Programming: A new approach to application 
development. CreateSpace, 2010. 

[Shu86] Shu, Nan C. "Visual programming languages: A perspective and a dimensional 
analysis." Visual Languages. Springer, Boston, MA, 1986. 

[JGH20] Jolt source code repository and readme documentation on Github. 
https://github.com/bazaarvoice/jolt. Accessed June, 2020. 
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010. Accessed Sept 
2019 

[JPG20] Jolt playground. http://jolt-demo.appspot.com/. Accessed June, 2020. 
[JNF20] NiFi Processor: JoltTransformJSON. https://nifi.apache.org/docs/nifi-

docs/components/org.apache.nifi/nifi-standard-
nar/1.5.0/org.apache.nifi.processors.standard.JoltTransformJSON/ Accessed June, 
2020. 

[TX20] NiFI Processor: TransformXml. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-standard-
nar/1.11.4/org.apache.nifi.processors.standard.TransformXml/index.html. Accessed 
June, 2020. 

[ES20] NiFI Processor: ExecuteScript. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-scripting-
nar/1.11.4/org.apache.nifi.processors.script.ExecuteScript/index.html. Accessed June 
2020. 

[NOG] Apache NiFi Overview Guide. https://nifi.apache.org/docs/nifi-
docs/html/overview.html. Accessed June, 2020. 

[NAR20] Apache NiFi REST API Documentation. https://nifi.apache.org/docs/nifi-docs/rest-
api/index.html Accessed June, 2020. 

[NAG20] Apache NiFi Administrator’s Guide: https://nifi.apache.org/docs/nifi-
docs/html/administration-guide.html#tls_generation_toolkit Accessed June, 2020. 

[RMQ20] RabbitMQ Documentation. https://www.rabbitmq.com/documentation.html 
Accessed June, 2020. 

[CAQ20] RabbitMQ for beginners. https://www.cloudamqp.com/blog/2015-05-18-part1-
rabbitmq-for-beginners-what-is-rabbitmq.html Accessed June, 2020. 

[OAS20] OpenAPI Specification 3.0.3. https://swagger.io/specification/ Accessed June, 
2020. 

[AAS20] AsyncAPI Specification 2.0.0. https://www.asyncapi.com/docs/specifications/2.0.0/ 
Accessed June, 2020. 

[VIDR18] M. Vidrih, 2018. How will Blockchain Work in Industry 4.0? Online available: 
https://medium.com/datadriveninvestor/how-will-blockchain-work-in-industry-4-0-
efdb5446e40c. Accessed June, 2020. 

[KON20] Kong 2.0 Open Source API Gateway. https://konghq.com/kong/. Accessed June, 
2020. 

[OAM20] OGC SWE: Observation Measurement (O&M). 
https://www.opengeospatial.org/standards/om. Accessed June, 2020 

[SML20] OGC SWE: SensorML https://www.opengeospatial.org/standards/sensorml. 
Accessed June, 2020 

[SOS20] OGC SWE: Sensor Observation Service (SOS). 
https://www.opengeospatial.org/standards/sos. Accessed June, 2020 

http://www.efpf.org/
https://github.com/bazaarvoice/jolt
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.%20Accessed%20Sept%202019
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.%20Accessed%20Sept%202019
http://jolt-demo.appspot.com/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.5.0/org.apache.nifi.processors.standard.JoltTransformJSON/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.5.0/org.apache.nifi.processors.standard.JoltTransformJSON/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.5.0/org.apache.nifi.processors.standard.JoltTransformJSON/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.TransformXml/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.TransformXml/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.TransformXml/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-scripting-nar/1.11.4/org.apache.nifi.processors.script.ExecuteScript/index.html.%20Accessed%20June%202020
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-scripting-nar/1.11.4/org.apache.nifi.processors.script.ExecuteScript/index.html.%20Accessed%20June%202020
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-scripting-nar/1.11.4/org.apache.nifi.processors.script.ExecuteScript/index.html.%20Accessed%20June%202020
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-scripting-nar/1.11.4/org.apache.nifi.processors.script.ExecuteScript/index.html.%20Accessed%20June%202020
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#tls_generation_toolkit
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#tls_generation_toolkit
https://www.rabbitmq.com/documentation.html
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://swagger.io/specification/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://medium.com/datadriveninvestor/how-will-blockchain-work-in-industry-4-0-efdb5446e40c
https://medium.com/datadriveninvestor/how-will-blockchain-work-in-industry-4-0-efdb5446e40c
https://konghq.com/kong/
https://www.opengeospatial.org/standards/om
https://www.opengeospatial.org/standards/sensorml
https://www.opengeospatial.org/standards/sos


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 144 / 191 

[SPS20] OGC SWE: Sensor Planning Service (SPS). 
https://www.opengeospatial.org/standards/sps.  Accessed June, 2020 

[STA20] OGC SWE: 5. SensorThings API. 
https://www.opengeospatial.org/standards/sensorthings.  Accessed June, 2020 

[WTD20] Web of Thing - Thing Description (TD). https://www.w3.org/TR/wot-thing-
description/. Accessed June, 2020 

[OUD20] OPC UA Part 100: Devices. https://opcfoundation.org/developer-
tools/specifications-unified-architecture/part-100-device-information-model. Accessed 
June, 2020 

[BIT19] BiTAS Std 120-2019: LOCATION COMPONENT SPECIFICATION. 
https://www.bita.studio/s/BiTAS-Location-Component-Specification-v4-rf7s.pdf. Accessed 
June, 2020 

[BTD20] BiTAS Tracking Data Framework Profile. 
https://static1.squarespace.com/static/5aa97ac8372b96325bb9ad66/t/5c7e88397817f73e
6c60a967/1551796284047/BiTAS+Tracking+Data+Frameowork+Profile+v9_ISTO.pdf. 
Accessed June, 2020 

[EPC20] EPCIS. https://www.gs1.org/epcis/epcis/1-1. Accessed June, 2020 

[GS120] GS1. https://www.gs1.org/. Accessed June, 2020 

[RFC34] RFC3444. https://tools.ietf.org/html/rfc3444. Accessed June, 2020 

[RMP20] RabbitMQ Messaging Patterns. https://www.rabbitmq.com/getstarted.html. 
Accessed June, 2020. 

http://www.efpf.org/
https://www.opengeospatial.org/standards/sps
https://www.opengeospatial.org/standards/sensorthings
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-100-device-information-model
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-100-device-information-model
https://www.bita.studio/s/BiTAS-Location-Component-Specification-v4-rf7s.pdf
https://static1.squarespace.com/static/5aa97ac8372b96325bb9ad66/t/5c7e88397817f73e6c60a967/1551796284047/BiTAS+Tracking+Data+Frameowork+Profile+v9_ISTO.pdf
https://static1.squarespace.com/static/5aa97ac8372b96325bb9ad66/t/5c7e88397817f73e6c60a967/1551796284047/BiTAS+Tracking+Data+Frameowork+Profile+v9_ISTO.pdf
https://www.gs1.org/epcis/epcis/1-1
https://www.gs1.org/
https://tools.ietf.org/html/rfc3444
https://www.rabbitmq.com/getstarted.html


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 145 / 191 

Annex C: API Specifications 

1. Data Spine Service Registry 
1.1. REST API for Lifecycle Management of Services 

{ 
  "openapi" : "3.0.0", 
  "info" : { 
    "version" : "3.0.0", 
    "title" : "LinkSmart Service Catalog REST API" 
  }, 
  "tags" : [ { 
    "name" : "sc", 
    "description" : "Service Catalog" 
  } ], 
  "paths" : { 
    "/" : { 
      "get" : { 
        "tags" : [ "sc" ], 
        "summary" : "Retrieves API index.", 
        "parameters" : [ { 
          "$ref" : "#/components/parameters/ParamPage" 
        }, { 
          "$ref" : "#/components/parameters/ParamPerPage" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Successful response", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "$ref" : "#/components/schemas/APIIndex" 
                } 
              } 
            } 
          }, 
          "401" : { 
            "$ref" : "#/components/responses/RespUnauthorized" 
          }, 
          "403" : { 
            "$ref" : "#/components/responses/RespForbidden" 
          }, 
          "500" : { 
            "$ref" : "#/components/responses/RespInternalServerError" 
          } 
        } 
      }, 
      "post" : { 
        "tags" : [ "sc" ], 
        "summary" : "Creates new `Service` object with a random UUID", 
        "requestBody" : { 
          "$ref" : "#/components/requestBodies/Service" 
        }, 
        "responses" : { 
          "201" : { 
            "description" : "Created successfully", 
            "headers" : { 
              "Location" : { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 146 / 191 

                "description" : "URL of the newly created Service", 
                "schema" : { 
                  "type" : "string" 
                } 
              } 
            }, 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "$ref" : "#/components/schemas/Service" 
                } 
              } 
            } 
          }, 
          "400" : { 
            "$ref" : "#/components/responses/RespBadRequest" 
          }, 
          "401" : { 
            "$ref" : "#/components/responses/RespUnauthorized" 
          }, 
          "403" : { 
            "$ref" : "#/components/responses/RespForbidden" 
          }, 
          "500" : { 
            "$ref" : "#/components/responses/RespInternalServerError" 
          } 
        } 
      } 
    }, 
    "/{id}" : { 
      "get" : { 
        "tags" : [ "sc" ], 
        "summary" : "Retrieves a `Service` object", 
        "parameters" : [ { 
          "name" : "id", 
          "in" : "path", 
          "description" : "ID of the `Service`", 
          "required" : true, 
          "schema" : { 
            "type" : "string" 
          } 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Successful response", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "$ref" : "#/components/schemas/Service" 
                } 
              } 
            } 
          }, 
          "400" : { 
            "$ref" : "#/components/responses/RespBadRequest" 
          }, 
          "401" : { 
            "$ref" : "#/components/responses/RespUnauthorized" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 147 / 191 

          }, 
          "403" : { 
            "$ref" : "#/components/responses/RespForbidden" 
          }, 
          "404" : { 
            "$ref" : "#/components/responses/RespNotfound" 
          }, 
          "500" : { 
            "$ref" : "#/components/responses/RespInternalServerError" 
          } 
        } 
      }, 
      "put" : { 
        "tags" : [ "sc" ], 
        "summary" : "Updates the existing `Service` or creates a new one (with the 
provided ID)", 
        "parameters" : [ { 
          "name" : "id", 
          "in" : "path", 
          "description" : "ID of the `Service`", 
          "required" : true, 
          "schema" : { 
            "type" : "string" 
          } 
        } ], 
        "requestBody" : { 
          "$ref" : "#/components/requestBodies/Service" 
        }, 
        "responses" : { 
          "200" : { 
            "description" : "Service updated successfully", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "$ref" : "#/components/schemas/Service" 
                } 
              } 
            } 
          }, 
          "201" : { 
            "description" : "A new service is created", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "$ref" : "#/components/schemas/Service" 
                } 
              } 
            } 
          }, 
          "400" : { 
            "$ref" : "#/components/responses/RespBadRequest" 
          }, 
          "401" : { 
            "$ref" : "#/components/responses/RespUnauthorized" 
          }, 
          "403" : { 
            "$ref" : "#/components/responses/RespForbidden" 
          }, 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 148 / 191 

          "409" : { 
            "$ref" : "#/components/responses/RespConflict" 
          }, 
          "500" : { 
            "$ref" : "#/components/responses/RespInternalServerError" 
          } 
        } 
      }, 
      "delete" : { 
        "tags" : [ "sc" ], 
        "summary" : "Deletes the `Service`", 
        "parameters" : [ { 
          "name" : "id", 
          "in" : "path", 
          "description" : "ID of the `Service`", 
          "required" : true, 
          "schema" : { 
            "type" : "string" 
          } 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Successful response" 
          }, 
          "401" : { 
            "$ref" : "#/components/responses/RespUnauthorized" 
          }, 
          "403" : { 
            "$ref" : "#/components/responses/RespForbidden" 
          }, 
          "404" : { 
            "$ref" : "#/components/responses/RespNotfound" 
          }, 
          "500" : { 
            "$ref" : "#/components/responses/RespInternalServerError" 
          } 
        } 
      } 
    }, 
    "/{jsonpath}/{operator}/{value}" : { 
      "get" : { 
        "tags" : [ "sc" ], 
        "summary" : "Service filtering API", 
        "description" : "The filtering API enables service filtering based on a given 
path, operator, and value. Below are few examples:\n* Filter all services belonging to 
PlatformX (convention for 'type' followed: <platform-name>.<service-type>):\n  
`/type/prefix/PlatformX`\n* Filter all services that have MQTT API(s):\n  
`/apis.protocol/equals/MQTT`\n* Filter all services based on address meta field:\n  
`/meta.address/contains/Bonn`\n", 
        "parameters" : [ { 
          "name" : "jsonpath", 
          "in" : "path", 
          "description" : "The dot notation path to search for in service objects", 
          "required" : true, 
          "schema" : { 
            "type" : "string" 
          } 
        }, { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 149 / 191 

          "name" : "operator", 
          "in" : "path", 
          "description" : "One of (equals, prefix, suffix, contains) string comparison 
operators", 
          "required" : true, 
          "schema" : { 
            "type" : "string" 
          } 
        }, { 
          "name" : "value", 
          "in" : "path", 
          "description" : "The intended value, prefix, suffix, or substring identified 
by the jsonpath", 
          "required" : true, 
          "schema" : { 
            "type" : "string" 
          } 
        }, { 
          "$ref" : "#/components/parameters/ParamPage" 
        }, { 
          "$ref" : "#/components/parameters/ParamPerPage" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Succcessful response", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "$ref" : "#/components/schemas/APIIndex" 
                } 
              } 
            } 
          }, 
          "401" : { 
            "$ref" : "#/components/responses/RespUnauthorized" 
          }, 
          "403" : { 
            "$ref" : "#/components/responses/RespForbidden" 
          }, 
          "500" : { 
            "$ref" : "#/components/responses/RespInternalServerError" 
          } 
        } 
      } 
    } 
  }, 
  "servers" : [ { 
    "url" : "/" 
  } ], 
  "components" : { 
    "parameters" : { 
      "ParamPage" : { 
        "name" : "page", 
        "in" : "query", 
        "description" : "Page number in the pagination", 
        "required" : false, 
        "schema" : { 
          "type" : "number", 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 150 / 191 

          "format" : "integer" 
        } 
      }, 
      "ParamPerPage" : { 
        "name" : "per_page", 
        "in" : "query", 
        "description" : "Number of entries per page", 
        "required" : false, 
        "schema" : { 
          "type" : "number", 
          "format" : "integer" 
        } 
      } 
    }, 
    "responses" : { 
      "RespBadRequest" : { 
        "description" : "Bad Request", 
        "content" : { 
          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/ErrorResponse" 
            } 
          } 
        } 
      }, 
      "RespUnauthorized" : { 
        "description" : "Unauthorized", 
        "content" : { 
          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/ErrorResponse" 
            } 
          } 
        } 
      }, 
      "RespForbidden" : { 
        "description" : "Forbidden", 
        "content" : { 
          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/ErrorResponse" 
            } 
          } 
        } 
      }, 
      "RespNotfound" : { 
        "description" : "Not Found", 
        "content" : { 
          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/ErrorResponse" 
            } 
          } 
        } 
      }, 
      "RespConflict" : { 
        "description" : "Conflict", 
        "content" : { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 151 / 191 

          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/ErrorResponse" 
            } 
          } 
        } 
      }, 
      "RespInternalServerError" : { 
        "description" : "Internal Server Error", 
        "content" : { 
          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/ErrorResponse" 
            } 
          } 
        } 
      } 
    }, 
    "requestBodies" : { 
      "Service" : { 
        "content" : { 
          "application/json" : { 
            "schema" : { 
              "$ref" : "#/components/schemas/Service" 
            } 
          } 
        }, 
        "description" : "Service to be created", 
        "required" : true 
      } 
    }, 
    "schemas" : { 
      "Service" : { 
        "title" : "Service", 
        "type" : "object", 
        "required" : [ "type" ], 
        "properties" : { 
          "id" : { 
            "type" : "string", 
            "readOnly" : true 
          }, 
          "type" : { 
            "type" : "string" 
          }, 
          "title" : { 
            "type" : "string" 
          }, 
          "description" : { 
            "type" : "string" 
          }, 
          "meta" : { 
            "type" : "object" 
          }, 
          "apis" : { 
            "type" : "array", 
            "items" : { 
              "type" : "object", 
              "properties" : { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 152 / 191 

                "id" : { 
                  "type" : "string" 
                }, 
                "title" : { 
                  "type" : "string" 
                }, 
                "description" : { 
                  "type" : "string" 
                }, 
                "protocol" : { 
                  "type" : "string" 
                }, 
                "url" : { 
                  "type" : "string" 
                }, 
                "spec" : { 
                  "type" : "object", 
                  "properties" : { 
                    "mediaType" : { 
                      "type" : "string" 
                    }, 
                    "url" : { 
                      "type" : "string" 
                    }, 
                    "schema" : { 
                      "type" : "object" 
                    } 
                  } 
                }, 
                "meta" : { 
                  "type" : "object" 
                } 
              } 
            } 
          }, 
          "doc" : { 
            "type" : "string" 
          }, 
          "ttl" : { 
            "type" : "integer", 
            "format" : "int64", 
            "minimum": 1, 
            "maximum": 2147483647 
          }, 
          "createdAt" : { 
            "type" : "string", 
            "format" : "date-time", 
            "readOnly" : true 
          }, 
          "updatedAt" : { 
            "type" : "string", 
            "format" : "date-time", 
            "readOnly" : true 
          }, 
          "expiresAt" : { 
            "type" : "string", 
            "format" : "date-time", 
            "readOnly" : true 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 153 / 191 

          } 
        } 
      }, 
      "APIIndex" : { 
        "type" : "object", 
        "properties" : { 
          "id" : { 
            "type" : "string" 
          }, 
          "description" : { 
            "type" : "string" 
          }, 
          "services" : { 
            "type" : "array", 
            "items" : { 
              "$ref" : "#/components/schemas/Service" 
            } 
          }, 
          "page" : { 
            "type" : "integer", 
            "format" : "int64" 
          }, 
          "per_page" : { 
            "type" : "integer" 
          }, 
          "total" : { 
            "type" : "integer" 
          } 
        } 
      }, 
      "ErrorResponse" : { 
        "type" : "object", 
        "properties" : { 
          "code" : { 
            "type" : "integer" 
          }, 
          "message" : { 
            "type" : "string" 
          } 
        } 
      } 
    } 
  } 
} 

1.2. MQTT Service Registration/De-registration API 

{ 
 "asyncapi": "2.0.0", 
 "info": { 
  "title": "Data Spine Service Registry's MQTT Service 
Registration/Deregistration API", 
  "version": "3.0.0", 
  "description": "### Lifecycle management of services using MQTT: \n\n 
* Service Registry (SR) also supports MQTT for service registration, updates and de-
registration. \n\n * Service registration/update is similar to PUT method of REST API. 
Here, a service uses a pre-configured topic defined in the config file (see 
`commonRegTopics` and `regTopics`) for publishing the message. \n\n * The will message 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 154 / 191 

of the registered service is used to de-register it from the SR. The will topic(s) are 
also defined in the config file (see `commonWillTopics` and `willTopics`).", 
  "license": { 
   "name": "Apache 2.0", 
   "url": "https://www.apache.org/licenses/LICENSE-2.0" 
  } 
 }, 
 "servers": { 
  "ds-message-broker-dev": { 
   "url": "broker.smecluster.com:{port}", 
   "description": "This RabbitMQ broker at SMECluster's servers 
is Data Spine's Message Broker for the development environment.", 
   "protocol": "mqtt", 
   "variables": { 
    "port": { 
     "description": "Secure connection (TLS) is 
available through port 8883. Currently MQTTs is not implemented", 
     "default": "1883", 
     "enum": [ 
      "1883", 
      "8883" 
     ] 
    } 
   } 
  } 
 }, 
 "channels": { 
  "sr/v3/cud/reg/{serviceId}": { 
   "parameters": { 
    "serviceId": { 
     "$ref": "#/components/parameters/serviceId" 
    } 
   }, 
   "publish": { 
    "summary": "MQTT topic for service 
registration/updates", 
    "description": "The Service Registry subscribes to 
this topic in `commonRegTopics` for service registrations and updates with the default 
qos of 1 as defined in the config file. \n\n Users can publish the service registration 
object as payload to this topic with a custom service `{serviceId}` for registring a 
service with that id. \n\n Example: \n\n `mosquitto_pub -h localhost -p 1883 -t 
'sr/v3/cud/reg/id1' -f ./service_object.json`", 
    "message": { 
     "payload": { 
      "type": "object", 
      "$ref": 
"#/components/schemas/Service" 
     } 
    } 
   } 
  }, 
  "sr/v3/cud/dereg/{serviceId}": { 
   "parameters": { 
    "serviceId": { 
     "$ref": "#/components/parameters/serviceId" 
    } 
   }, 
   "publish": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 155 / 191 

    "summary": "MQTT topic for service de-registration", 
    "description": "The Service Registry subscribes to 
this topic in `commonWillTopics` for service de-registrations with the default qos of 1 
as defined in the config file. \n\n Users can publish any random message as payload to 
this topic with the `{serviceId}` of the service to be de-registered. \n\n Example: 
\n\n `mosquitto_pub -h localhost -p 1883 -t 'sr/v3/cud/dereg/id1' –m 'foobar'`", 
    "message": { 
     "payload": { 
      "type": "string" 
     } 
    } 
   } 
  } 
 }, 
 "components": { 
  "parameters": { 
   "serviceId": { 
    "description": "The ID of the service.", 
    "schema": { 
     "type": "string" 
    } 
   } 
  }, 
  "schemas": { 
   "Service": { 
    "title": "Service", 
    "type": "object", 
    "required": ["type"], 
    "properties": { 
     "id": { 
      "type": "string", 
      "readOnly": true 
     }, 
     "type": { 
      "type": "string" 
     }, 
     "title": { 
      "type": "string" 
     }, 
     "description": { 
      "type": "string" 
     }, 
     "meta": { 
      "type": "object" 
     }, 
     "apis": { 
      "type": "array", 
      "items": { 
       "type": "object", 
       "properties": { 
        "id": { 
         "type": 
"string" 
        }, 
        "title": { 
         "type": 
"string" 
        }, 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 156 / 191 

        "description": { 
         "type": 
"string" 
        }, 
        "protocol": { 
         "type": 
"string" 
        }, 
        "url": { 
         "type": 
"string" 
        }, 
        "spec": { 
         "type": 
"object", 
        
 "properties": { 
         
 "mediaType": { 
          
 "type": "string" 
          }, 
         
 "url": { 
          
 "type": "string" 
          }, 
         
 "schema": { 
          
 "type": "object" 
          } 
         } 
        }, 
        "meta": { 
         "type": 
"object" 
        } 
       } 
      } 
     }, 
     "doc": { 
      "type": "string" 
     }, 
     "ttl": { 
      "type": "integer", 
      "format": "int64", 
      "minimum": 1, 
      "maximum": 2147483647 
     }, 
     "createdAt": { 
      "type": "string", 
      "format": "date-time", 
      "readOnly": true 
     }, 
     "updatedAt": { 
      "type": "string", 
      "format": "date-time", 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 157 / 191 

      "readOnly": true 
     }, 
     "expiresAt": { 
      "type": "string", 
      "format": "date-time", 
      "readOnly": true 
     } 
    } 
   } 
  } 
 } 
} 

1.3. MQTT Announcement API 

{ 
 "asyncapi": "2.0.0", 
 "info": { 
  "title": "Data Spine Service Registry's MQTT Service Announcement 
API", 
  "version": "3.0.0", 
  "description": "### Service registration status announcements over 
MQTT: \n\n * Service Registry announces the service registration and updates via MQTT 
using retain messages. \n\n * Service Registry also announces the service de-
registration (on explicit de-registration request via REST/MQTT API or on expiration 
due to the set TTL) via MQTT.", 
  "license": { 
   "name": "Apache 2.0", 
   "url": "https://www.apache.org/licenses/LICENSE-2.0" 
  } 
 }, 
 "servers": { 
  "ds-message-broker-dev": { 
   "url": "broker.smecluster.com:{port}", 
   "description": "This RabbitMQ broker at SMECluster's servers 
is Data Spine's Message Broker for the development environment.", 
   "protocol": "mqtt", 
   "variables": { 
    "port": { 
     "description": "Secure connection (TLS) is 
available through port 8883. Currently MQTTs is not implemented", 
     "default": "1883", 
     "enum": [ 
      "1883", 
      "8883" 
     ] 
    } 
   } 
  } 
 }, 
 "channels": { 
  "sr/v3/announcement/{serviceType}/{serviceId}/alive": { 
   "parameters": { 
    "serviceId": { 
     "$ref": "#/components/parameters/serviceId" 
    }, 
    "serviceType": { 
     "$ref": "#/components/parameters/serviceType" 
    } 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 158 / 191 

   }, 
   "subscribe": { 
    "summary": "MQTT topic for service registration/update 
announcements", 
    "description": "The Service Registry publishes to this 
topic when the service with ID `{serviceId}` and type {serviceType} is registered or 
whenever it is updated. The service registration/update messages are retained. Default 
qos used for the publish operation is 1. \n\n Users can subscribe to this topic to 
monitor service registration/updates. \n\n Examples: \n\n * `mosquitto_sub -h localhost 
-p 1883 -t 'sr/v3/announcement/efpf.marketplace-service/eb647488-a53b-4223-89ef-
63ae2ce826ae/alive'` \n\n * `mosquitto_sub -h localhost -p 1883 -t 
'sr/v3/announcement/efpf.marketplace-service/+/alive'` \n\n * `mosquitto_sub -h 
localhost -p 1883 -t 'sr/v3/announcement/+/+/alive'`", 
    "message": { 
     "payload": { 
      "type": "object", 
      "$ref": 
"#/components/schemas/Service" 
     } 
    } 
   } 
  }, 
  "sr/v3/announcement/{serviceType}/{serviceId}/dead": { 
   "parameters": { 
    "serviceId": { 
     "$ref": "#/components/parameters/serviceId" 
    }, 
    "serviceType": { 
     "$ref": "#/components/parameters/serviceType" 
    } 
   }, 
   "subscribe": { 
    "summary": "MQTT topic for service de-registration 
announcements", 
    "description": "The Service Registry publishes to this 
topic when the service with ID `{serviceId}` and type {serviceType} is de-registered. 
The service de-registration messages are not retained. Default qos used for the publish 
operation is 1. Upon de-registration of services, the associated retained messages of 
service registration/updates (topic: 
`sr/v3/announcement/{serviceType}/{serviceId}/alive`) are also removed. \n\n Users can 
subscribe to this topic to get notified when services become unavailable i.e. when they 
are removed from the Service Registry upon explicit de-registration or expiration. \n\n 
Examples: \n\n * `mosquitto_sub -h localhost -p 1883 -t 
'sr/v3/announcement/efpf.marketplace-service/eb647488-a53b-4223-89ef-
63ae2ce826ae/dead'` \n\n * `mosquitto_sub -h localhost -p 1883 -t 
'sr/v3/announcement/efpf.marketplace-service/+/dead'` \n\n * `mosquitto_sub -h 
localhost -p 1883 -t 'sr/v3/announcement/+/+/dead'`", 
    "message": { 
     "payload": { 
      "type": "string" 
     } 
    } 
   } 
  } 
 }, 
 "components": { 
  "parameters": { 
   "serviceId": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 159 / 191 

    "description": "The ID of the service.", 
    "schema": { 
     "type": "string" 
    } 
   }, 
   "serviceType": { 
    "description": "The `type` of the service.", 
    "schema": { 
     "type": "string" 
    } 
   } 
  }, 
  "schemas": { 
   "Service": { 
    "title": "Service", 
    "type": "object", 
    "required": ["type"], 
    "properties": { 
     "id": { 
      "type": "string", 
      "readOnly": true 
     }, 
     "type": { 
      "type": "string" 
     }, 
     "title": { 
      "type": "string" 
     }, 
     "description": { 
      "type": "string" 
     }, 
     "meta": { 
      "type": "object" 
     }, 
     "apis": { 
      "type": "array", 
      "items": { 
       "type": "object", 
       "properties": { 
        "id": { 
         "type": 
"string" 
        }, 
        "title": { 
         "type": 
"string" 
        }, 
        "description": { 
         "type": 
"string" 
        }, 
        "protocol": { 
         "type": 
"string" 
        }, 
        "url": { 
         "type": 
"string" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 160 / 191 

        }, 
        "spec": { 
         "type": 
"object", 
        
 "properties": { 
         
 "mediaType": { 
          
 "type": "string" 
          }, 
         
 "url": { 
          
 "type": "string" 
          }, 
         
 "schema": { 
          
 "type": "object" 
          } 
         } 
        }, 
        "meta": { 
         "type": 
"object" 
        } 
       } 
      } 
     }, 
     "doc": { 
      "type": "string" 
     }, 
     "ttl": { 
      "type": "integer", 
      "format": "int64", 
      "minimum": 1, 
      "maximum": 2147483647 
     }, 
     "createdAt": { 
      "type": "string", 
      "format": "date-time", 
      "readOnly": true 
     }, 
     "updatedAt": { 
      "type": "string", 
      "format": "date-time", 
      "readOnly": true 
     }, 
     "expiresAt": { 
      "type": "string", 
      "format": "date-time", 
      "readOnly": true 
     } 
    } 
   } 
  } 
 } 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 161 / 191 

} 

 
2. Matchmaker for Bidding Process - REST API 

  { 
  "openapi" : "3.0.1", 
  "info" : { 
    "title" : "Matchmaker-API services", 
    "description" : "Matchmaker API for Automated Online Bidding", 
    "version" : "0.1" 
  }, 
  "servers" : [ { 
    "url" : "https://inter.composition-ecosystem.eu" 
  } ], 
  "paths" : { 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/setMarketplaceService" : { 
      "post" : { 
        "description" : "Insert new services or products in marketplace", 
        "requestBody" : { 
          "content" : { 
            "application/json" : { 
              "schema" : { 
                "type" : "object", 
                "properties" : { 
                  "insert" : { 
                    "type" : "object", 
                    "properties" : { 
                      "details" : { 
                        "type" : "object", 
                        "properties" : { 
                          "service" : { 
                            "type" : "string" 
                          }, 
                          "id" : { 
                            "type" : "string" 
                          }, 
                          "category" : { 
                            "type" : "string" 
                          }, 
                          "good" : { 
                            "type" : "string" 
                          } 
                        } 
                      }, 
                      "vars" : { 
                        "type" : "array", 
                        "items" : { 
                          "type" : "string" 
                        } 
                      } 
                    } 
                  } 
                } 
              }, 
              "examples" : { 
                "0" : { 
                  "value" : "{\r\n\t\"insert\" :{\r\n\t\t\"vars\": [\"id\", 
\"service\"] ,\r\n\t\t\"details\": {\r\n\t\t\t\"id\": 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 162 / 191 

\"agentCompA@composition\",\r\n\t\t\t\"service\": \"Company_22_Service\", 
\r\n\t\t\t\"good\": \"chair\", \r\n\t\t\t\"category\": 
\"Chair_Manufacturing\"\r\n\t\t}\r\n\t\r\n\t}\r\n}\r\n" 
                } 
              } 
            } 
          } 
        }, 
        "responses" : { 
          "200" : { 
            "description" : "Successful insert of new services or products in 
marketplace", 
            "content" : { 
              "*/*" : { 
                "schema" : { 
                  "type" : "string" 
                }, 
                "examples" : { } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/getMarketplaceCompanies" : { 
      "get" : { 
        "description" : "Get Marketplace Companies and their information", 
        "responses" : { 
          "200" : { 
            "description" : "Successful retrieval of Marketplace Companies" 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/getGoodsByCategory" : { 
      "get" : { 
        "description" : "Get Marketplace Goods by the Service Type they belong", 
        "responses" : { 
          "200" : { 
            "description" : "Successful retrieval of Marketplace goods", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "type" : "object", 
                  "properties" : { } 
                }, 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 163 / 191 

                "examples" : { 
                  "0" : { 
                    "value" : "[\n  {\n    \"category\": \"Energy_supply\",\n    
\"goods\": \"Biodiesel_fuel\"\n  },\n  {\n    \"category\": \"Waste_management\",\n    
\"goods\": [\n      \"Wood_wastes\",\n      \" Plastic_wastes\",\n      \" Paper\",\n      
\" Organic_wastes\",\n      \" Scrap_metal\",\n      \" Glass\"\n    ]\n  },\n  {\n    
\"category\": \"Support_operation\",\n    \"goods\": [\n      \"Cabin\",\n      \" 
Lifts\",\n      \" Elevators\",\n      \" Escalators\",\n      \" Car_Lifting\"\n    
]\n  },\n  {\n    \"category\": \"Software_solutions\",\n    \"goods\": [\n      
\"Visualization\",\n      \" Object_Locator\",\n      \" Object_Catalog\",\n      \" 
Cloud\",\n      \" IoT\",\n      \" Analytics\",\n      \" Data_Storage\",\n      \" 
Alarm_Manager\",\n      \" Event_Manager\",\n      \" Hardware\"\n    ]\n  },\n  {\n    
\"category\": \"Lift_manufacturing\",\n    \"goods\": \"Lifts\"\n  }\n]" 
                  } 
                } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/performMatchmaking" : { 
      "post" : { 
        "description" : "Rule based match of requester with suppliers", 
        "requestBody" : { 
          "content" : { 
            "application/json" : { 
              "schema" : { 
                "type" : "object", 
                "properties" : { 
                  "offers" : { 
                    "type" : "array", 
                    "items" : { 
                      "type" : "string" 
                    } 
                  }, 
                  "agent_owner" : { 
                    "type" : "string" 
                  }, 
                  "conversation_id" : { 
                    "type" : "string" 
                  }, 
                  "service" : { 
                    "type" : "string" 
                  }, 
                  "type" : { 
                    "type" : "string" 
                  }, 
                  "offer_details" : { 
                    "type" : "object", 
                    "properties" : { 
                      "delivery_methods" : { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 164 / 191 

                        "type" : "array", 
                        "items" : { 
                          "type" : "string" 
                        } 
                      }, 
                      "payment_methods" : { 
                        "type" : "array", 
                        "items" : { 
                          "type" : "string" 
                        } 
                      }, 
                      "quantity" : { 
                        "type" : "number" 
                      }, 
                      "quantity_uom" : { 
                        "type" : "string" 
                      }, 
                      "expiration" : { 
                        "type" : "string" 
                      }, 
                      "currency" : { 
                        "type" : "string" 
                      }, 
                      "good" : { 
                        "type" : "string" 
                      } 
                    } 
                  }, 
                  "sender_id" : { 
                    "type" : "string" 
                  } 
                } 
              }, 
              "examples" : { 
                "0" : { 
                  "value" : "{\r\n  
\"conversation_id\":\"kjhfewKJDGWHJGWH7856186GBFWE\",\r\n  
\"sender_id\":\"agent_req_1\",\r\n  \"agent_owner\": \"ELDIA\",\r\n  
\"type\":\"CFP\",\r\n  \"service\":\"Software_solutions\",\r\n  \"offer_details\":{\r\n    
\"good\":\"IoT\",\r\n    \"expiration\":\"2017-06-07T24:00:00+01:00\",\r\n    
\"currency\":\"USD\",\r\n    \"quantity\":100.0,\r\n    \"quantity_uom\":\"q\",\r\n    
\"delivery_methods\":  [\"DeliveryModeFreight\", \"DeliveryModePickup\"], \r\n    
\"payment_methods\": [\"PayPal\", \"DirectDebit\", \"Discover\", \"Cash\"]\r\n  },\r\n  
\"offers\":[]\r\n  \r\n}" 
                } 
              } 
            } 
          } 
        }, 
        "responses" : { 
          "200" : { 
            "description" : "Successful retrieval of the match making results", 
            "content" : { 
              "*/*" : { 
                "schema" : { 
                  "type" : "string" 
                }, 
                "examples" : { } 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 165 / 191 

              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/offersEvaluation" : { 
      "post" : { 
        "description" : "Rule-based and weighted criteria assessment of offers", 
        "requestBody" : { 
          "content" : { 
            "application/json" : { 
              "schema" : { 
                "type" : "object", 
                "properties" : { 
                  "offers" : { 
                    "type" : "array", 
                    "items" : { 
                      "type" : "object", 
                      "properties" : { 
                        "offer_details" : { 
                          "type" : "object", 
                          "properties" : { 
                            "agent_owner" : { 
                              "type" : "string" 
                            }, 
                            "delivery" : { 
                              "type" : "object", 
                              "properties" : { 
                                "methods" : { 
                                  "type" : "array", 
                                  "items" : { 
                                    "type" : "string" 
                                  } 
                                }, 
                                "time" : { 
                                  "type" : "integer" 
                                } 
                              } 
                            }, 
                            "price" : { 
                              "type" : "object", 
                              "properties" : { 
                                "insurance" : { 
                                  "type" : "number" 
                                }, 
                                "total" : { 
                                  "type" : "number" 
                                }, 
                                "service" : { 
                                  "type" : "number" 
                                }, 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 166 / 191 

                                "transportation" : { 
                                  "type" : "number" 
                                } 
                              } 
                            }, 
                            "payment" : { 
                              "type" : "object", 
                              "properties" : { 
                                "terms" : { 
                                  "type" : "integer" 
                                }, 
                                "methods" : { 
                                  "type" : "array", 
                                  "items" : { 
                                    "type" : "string" 
                                  } 
                                }, 
                                "currency" : { 
                                  "type" : "string" 
                                } 
                              } 
                            }, 
                            "good" : { 
                              "type" : "string" 
                            }, 
                            "sender_id" : { 
                              "type" : "string" 
                            } 
                          } 
                        } 
                      } 
                    } 
                  }, 
                  "agent_owner" : { 
                    "type" : "string" 
                  }, 
                  "conversation_id" : { 
                    "type" : "string" 
                  }, 
                  "service" : { 
                    "type" : "string" 
                  }, 
                  "criteria" : { 
                    "type" : "array", 
                    "items" : { 
                      "type" : "string" 
                    } 
                  }, 
                  "type" : { 
                    "type" : "string" 
                  }, 
                  "offer_details" : { 
                    "type" : "object", 
                    "properties" : { 
                      "delivery_methods" : { 
                        "type" : "array", 
                        "items" : { 
                          "type" : "string" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 167 / 191 

                        } 
                      }, 
                      "payment_methods" : { 
                        "type" : "array", 
                        "items" : { 
                          "type" : "string" 
                        } 
                      }, 
                      "quantity" : { 
                        "type" : "number" 
                      }, 
                      "quantity_uom" : { 
                        "type" : "string" 
                      }, 
                      "expiration" : { 
                        "type" : "string" 
                      }, 
                      "currency" : { 
                        "type" : "string" 
                      }, 
                      "good" : { 
                        "type" : "string" 
                      } 
                    } 
                  }, 
                  "sender_id" : { 
                    "type" : "string" 
                  } 
                } 
              }, 
              "examples" : { 
                "0" : { 
                  "value" : " 
{\r\n\"conversation_id\":\"kjhfewKJDGWHJGWH7856186GBFWE\",\r\n  
\"sender_id\":\"agent_req_1\",\r\n  \"agent_owner\": \"KLEEMANN\",\r\n  
\"type\":\"OFFER\",\r\n  \"service\":\"Software_solutions\",\r\n\r\n  
\"offer_details\":{\r\n    \"good\":\"IoT\",\r\n    \"expiration\":\"2017-06-
07T24:00:00+01:00\",\r\n    \"currency\":\"USD\",\r\n    \"quantity\":120.0,\r\n    
\"quantity_uom\":\"q\",\r\n    \"delivery_methods\":  [\"DeliveyModeDirectDownload\", 
\"DeliveryModeMail\"], \r\n    \"payment_methods\": [\"PayPal\", \"DirectDebit\", 
\"Discover\", \"Cash\"]\r\n  },\r\n  \"criteria\": [\"rating\", \"payment_terms\",  
\"delivery_time\", \"certification\", \"price\"],\r\n   \"offers\": [\r\n   {\r\n  
\t\"offer_details\":{\r\n\t  \t\"sender_id\":\"agent_supplier_1\",\r\n\t  
\t\"agent_owner\": \"Nextworks\",\r\n\t    \"good\":\"IoT\",\r\n\t    \"delivery\": 
\r\n\t    \t{\r\n\t    \t\"time\":2,\r\n\t    \t\"methods\": 
[\"DeliveyModeDirectDownload\", \"DeliveryModeMail\"]\r\n\t    \t},\r\n\t    
\"payment\":\r\n\t    \t{\r\n\t    \t\"methods\": [\"PayPal\", \"DirectDebit\", 
\"Discover\", \"Cash\"],\r\n\t    \t\"terms\": 60,\r\n\t    \t\"currency\": \"EUR\" 
\r\n\t    \t},   \t\r\n\t    \"price\":\r\n\t    \t{\r\n\t    \t\"transportation\": 0.0 
,\r\n\t    \t\"insurance\": 80.0, \r\n\t    \t\"service\": 142.0, \r\n\t    
\t\"total\": 222.0\r\n    \t\t}\r\n    \t}\r\n   },\r\n   \r\n   {\r\n  
\t\"offer_details\":{\r\n\t  \t\"sender_id\":\"agent_supplier_2\",\r\n\t  
\t\"agent_owner\": \"CNET\",\r\n\t    \"good\":\"IoT\",\r\n\t    \"delivery\": \r\n\t    
\t{\r\n\t    \t\"time\":1,\r\n\t    \t\"methods\": [\"DeliveyModeDirectDownload\", 
\"DeliveryModeMail\"]\r\n\t    \t},\r\n\t    \"payment\":\r\n\t    \t{\r\n\t    
\t\"methods\": [\"DirectDebit\", \"CheckInAdvance\", \"Cash\"],\r\n\t    \t\"terms\": 
50,\r\n\t    \t\"currency\": \"EUR\" \r\n\t    \t},   \t\r\n\t    \"price\":\r\n\t    
\t{\r\n\t    \t\"transportation\": 0.0 ,\r\n\t    \t\"insurance\": 60.0, \r\n\t    

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 168 / 191 

\t\"service\": 150.0, \r\n\t    \t\"total\": 210.0\r\n\t    \t\r\n\t    \t}\r\n    \r\n    
\t}\r\n   }\r\n   ]\r\n}\r\n" 
                } 
              } 
            } 
          } 
        }, 
        "responses" : { 
          "200" : { 
            "description" : "Return of best available offer", 
            "content" : { 
              "*/*" : { 
                "schema" : { 
                  "type" : "string" 
                }, 
                "examples" : { } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/getInfoFromOntology" : { 
      "get" : { 
        "description" : "Get available marketplace Companies and Services/Products", 
        "responses" : { 
          "200" : { 
            "description" : "Successfully return of information" 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/getMarketplaceServices" : { 
      "get" : { 
        "description" : "Get available marketplace Services/Products", 
        "responses" : { 
          "200" : { 
            "description" : "Successfully return of information" 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 169 / 191 

      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/deleteCompany" : { 
      "get" : { 
        "description" : "Delete company from marketplace by its id", 
        "parameters" : [ { 
          "name" : "id", 
          "in" : "query", 
          "schema" : { 
            "type" : "string" 
          }, 
          "example" : "agentCompA@composition" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Successful delete", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "type" : "object", 
                  "properties" : { 
                    "operation_info" : { 
                      "type" : "string" 
                    }, 
                    "description" : { 
                      "type" : "string" 
                    }, 
                    "status" : { 
                      "type" : "integer" 
                    } 
                  } 
                }, 
                "examples" : { 
                  "0" : { 
                    "value" : "{\n  \"status\": 1,\n  \"operation_info\": 
\"successful\",\n  \"description\": \"Delete Company\"\n}" 
                  } 
                } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/setMarketplaceCompany" : { 
      "post" : { 
        "description" : "Insert new company to the Marketplace", 
        "requestBody" : { 
          "content" : { 
            "application/json" : { 
              "schema" : { 
                "type" : "object", 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 170 / 191 

                "properties" : { 
                  "insert" : { 
                    "type" : "object", 
                    "properties" : { 
                      "details" : { 
                        "type" : "object", 
                        "properties" : { 
                          "agent_owner" : { 
                            "type" : "string" 
                          }, 
                          "service" : { 
                            "type" : "object", 
                            "properties" : { 
                              "name" : { 
                                "type" : "string" 
                              }, 
                              "category" : { 
                                "type" : "string" 
                              }, 
                              "good" : { 
                                "type" : "string" 
                              } 
                            } 
                          }, 
                          "business_type" : { 
                            "type" : "string" 
                          }, 
                          "rating" : { 
                            "type" : "string" 
                          }, 
                          "description" : { 
                            "type" : "string" 
                          }, 
                          "location" : { 
                            "type" : "object", 
                            "properties" : { 
                              "number" : { 
                                "type" : "string" 
                              }, 
                              "country" : { 
                                "type" : "string" 
                              }, 
                              "code" : { 
                                "type" : "integer" 
                              }, 
                              "city" : { 
                                "type" : "string" 
                              }, 
                              "street" : { 
                                "type" : "string" 
                              }, 
                              "state" : { 
                                "type" : "string" 
                              } 
                            } 
                          }, 
                          "legal_name" : { 
                            "type" : "string" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 171 / 191 

                          }, 
                          "sender_id" : { 
                            "type" : "string" 
                          } 
                        } 
                      }, 
                      "vars" : { 
                        "type" : "array", 
                        "items" : { 
                          "type" : "string" 
                        } 
                      } 
                    } 
                  } 
                } 
              }, 
              "examples" : { 
                "0" : { 
                  "value" : "{\r\n\t\"insert\" :{\r\n\t\t\"vars\": [\"agent_owner\", 
\"sender_id\", \"rating\", \"location\", \"legal_name\", \"description\", 
\"business_type\", \"service\"] ,\r\n\t\t\"details\": {\r\n\t\t\t\"agent_owner\": 
\"Company_A\",\r\n\t\t\t\"sender_id\": \"agentCompA@composition\",\r\n\t\t\t\"rating\": 
\"3\",\r\n\t\t\t\"location\": {\r\n\t\t\t\t\"street\":\"Street\", 
\r\n\t\t\t\t\"number\": \"1\", \r\n\t\t\t\t\"city\": \"City\",\r\n\t\t\t\t\"state\": 
\"State\", \r\n\t\t\t\t\"code\": 90000, 
\r\n\t\t\t\t\"country\":\"Greece\"\r\n\t\t\t\t\t}, \r\n\t\t\t\"legal_name\": \"CompA 
SA\", \r\n\t\t\t\"description\": \"My description\", \r\n\t\t\t\"business_type\": 
\"Manufacturer\",\r\n\t\t\t\"service\": 
{\r\n\t\t\t\t\"name\":\"CompanyA_chairService\", 
\r\n\t\t\t\t\"category\":\"Chair_manufacturing\",\r\n\t\t\t\t\"good\": \"Chair\" 
\r\n\t\t\t}\t\t\r\n\t\t\t\r\n\t\t}\r\n\t\r\n\t}\r\n}\r\n" 
                } 
              } 
            } 
          } 
        }, 
        "responses" : { 
          "200" : { 
            "description" : "Successfully added new company", 
            "content" : { 
              "*/*" : { 
                "schema" : { 
                  "type" : "string" 
                }, 
                "examples" : { } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/getServicesFromCompany" : { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 172 / 191 

      "get" : { 
        "description" : "Get Services and Products of a Company by the company's id", 
        "parameters" : [ { 
          "name" : "id", 
          "in" : "query", 
          "schema" : { 
            "type" : "string" 
          }, 
          "example" : "agentKLE@composition" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Successful return of Company's services and products", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "type" : "object", 
                  "properties" : { } 
                }, 
                "examples" : { 
                  "0" : { 
                    "value" : "[\n  {\n    \"service\": \"Lift_Manufacture\",\n    
\"description\": \"KLEEMANN offers complete traction and hydraulic lift systems, both 
with and without machine room, from initial design through to development and 
production.\",\n    \"service id\": \"15-40 days\",\n    \"warranty period\": \"2 
months\",\n    \"transportation mode\": \"DeliveryModeFreight\"\n  },\n  {\n    
\"service\": \"Lift_Manufacture\",\n    \"description\": \"KLEEMANN offers complete 
traction and hydraulic lift systems, both with and without machine room, from initial 
design through to development and production.\",\n    \"service id\": 
\"lift_manufacturing@KLE\",\n    \"warranty period\": \"2 months\",\n    
\"transportation mode\": \"DeliveryModeFreight\"\n  },\n  {\n    \"service\": 
\"24/7_service/support\",\n    \"description\": \"To ensure that designing, ordering, 
receiving and maintaining these products is as stress-free and effortless as possible, 
KLEEMANN presents dedicated service teams that offer additional support and guidance at 
every stage\",\n    \"service id\": \"support@KLE\",\n    \"warranty period\": \"1 
month\"\n  },\n  {\n    \"description\": \"KLEEMANN offers pre-engineered or fully-
customised elevators, to perfectly fit in each and every project. KLEEMANN responds 
reliably, quickly, precisely, and cost effectively to any specifications, as result of 
an acquired experience on demanding projects.\",\n    \"service id\": \"fully-custom-
elevators@KLE\",\n    \"warranty period\": \"2 months\",\n    \"delivery time\": \"15-
30 days\",\n    \"transportation mode\": [\n      \"DeliveryModeFreight\",\n      \" 
DeliveryModeOwnFleet\"\n    ],\n    \"product\": \"Fully-customized_Elevators\"\n  },\n  
{\n    \"description\": \"Pick from futuristic, modern, classic or panoramic lifts, and 
create your ideal design with doors and cabin parts including ceiling, floor, walls, 
handrail, mirrors and operation panels\",\n    \"service id\": \"Cabins\",\n    
\"warranty period\": \"1 month\",\n    \"delivery time\": \"10-25 days\",\n    
\"transportation mode\": [\n      \"DeliveryModeFreight\",\n      \" 
DeliveryModeOwnFleet\"\n    ],\n    \"product\": \"Cabins\"\n  },\n  {\n    
\"description\": \"KLEEMANN Parking Systems offer a diverse range of vertical stacking 
and sliding platform solutions. Building on technological advancements, our intelligent 
multi-storey Parking Systems guarantee exceptional performance, passenger comfort and 
safety.\",\n    \"service id\": \"carLifting@KLE\",\n    \"warranty period\": \"2 
months\",\n    \"delivery time\": \"20-30 days\",\n    \"transportation mode\": [\n      
\"DeliveryModeFreight\",\n      \" DeliveryModeOwnFleet\"\n    ],\n    \"product\": 
\"Car_Lifting_Systems\"\n  },\n  {\n    \"description\": \"KLEEMANN Escalators and 
Moving Walks are versatile and suitable for use in all kinds of buildings, with tailor-
made design alternatives that offer high rise, outdoor, heavy duty, high capacity and 
eco-friendly options for special projects. \",\n    \"service id\": \"escalators-

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 173 / 191 

movingWalks@KLE\",\n    \"warranty period\": \"1 month\",\n    \"delivery time\": \"15-
30 days\",\n    \"transportation mode\": [\n      \"DeliveryModeFreight\",\n      \" 
DeliveryModeOwnFleet\"\n    ],\n    \"product\": \"Escalators_and_Moving_Walks\"\n  
},\n  {\n    \"description\": \"KLEEMANN lifts are designed to enhance the quality of 
commercial domain and the functionality of all types of industrial establishment.Our 
wealth of technical know-how ensures high technological performance, reliability and 
safety.\",\n    \"service id\": \"elevators-lifts@KLE\",\n    \"warranty period\": \"2 
months\",\n    \"delivery time\": \"15-30 days\",\n    \"transportation mode\": [\n      
\"DeliveryModeFreight\",\n      \" DeliveryModeOwnFleet\"\n    ],\n    \"product\": 
\"Elevators_and_Lifts\"\n  },\n  {\n    \"description\": \"Pick from futuristic, 
modern, classic or panoramic lifts, and create your ideal design with doors and cabin 
parts including ceiling, floor, walls, handrail, mirrors and operation panels\",\n    
\"service id\": \"cabins@KLE\",\n    \"warranty period\": \"1 month\",\n    \"delivery 
time\": \"10-25 days\",\n    \"transportation mode\": [\n      
\"DeliveryModeFreight\",\n      \" DeliveryModeOwnFleet\"\n    ],\n    \"product\": 
\"Cabins\"\n  }\n]" 
                  } 
                } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    }, 
    "/matchmaker/COMPOSITION_RBMM_Restful_WS/RBMM/getCompanyDetails" : { 
      "get" : { 
        "description" : "Get information of marketplace company by giving its id", 
        "parameters" : [ { 
          "name" : "id", 
          "in" : "query", 
          "schema" : { 
            "type" : "string" 
          }, 
          "example" : "agentCNET@composition" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "Successful return of company's information", 
            "content" : { 
              "application/json" : { 
                "schema" : { 
                  "type" : "object", 
                  "properties" : { } 
                }, 
                "examples" : { 
                  "0" : { 
                    "value" : "[\n  {\n    \"company brand name\": \"CNET\",\n    
\"trust-score\": \"5\",\n    \"company legal name\": \"CNet Svenska AB\",\n    
\"description\": \"CNet is an Internet of Things company developing innovative products 
and services for a wide range of business and consumer applications utilizing the 
latest IoT, Big Data and Cloud technologies to create business improvements. \",\n    
\"location\": {\n      \"street\": \"Svärdvägen\",\n      \"number\": \"3A\",\n      

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 174 / 191 

\"state\": \"Danderyd\",\n      \"code\": \"18233\",\n      \"city\": \"Danderyd\"\n    
},\n    \"origin country\": \"Sweden\",\n    \"business type\": \"Service_Provider\",\n    
\"website\": \"https://www.cnet.se/\",\n    \"logo\": 
\"http://efpf.iti.gr/public/logos/cnet.png\",\n    \"services\": [\n      
\"Cloud_Services\",\n      \" IoT_Connectivity_Services\",\n      \" IoT_Analytics\"\n    
],\n    \"activity sector\": \"Software_solutions\"\n  }\n]" 
                  } 
                } 
              } 
            } 
          } 
        }, 
        "servers" : [ { 
          "url" : "https://inter.composition-ecosystem.eu" 
        } ] 
      }, 
      "servers" : [ { 
        "url" : "https://inter.composition-ecosystem.eu" 
      } ] 
    } 
  }, 
  "components" : { 
    "securitySchemes" : { 
      "basic" : { 
        "type" : "http", 
        "scheme" : "basic" 
      } 
    } 
  } 
}

http://www.efpf.org/


 

 

3. Portal: Backend API 

{ 
 "openapi": "3.0.1", 
 "info": { 
  "title": "PortalBackend", 
  "description": "Portal Backend service as part of T5.2 EFPF Portal", 
  "version": "v1" 
 }, 
 "paths": { 
  "/v1/Admin": { 
   "get": { 
    "tags": [ 
     "Admin" 
    ], 
    "responses": { 
     "200": { 
      "description": "Success" 
     }, 
     "401": { 
      "description": "Unauthorized", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     } 
    } 
   } 
  }, 
  "/v1/Event": { 
   "post": { 
    "tags": [ 
     "Event" 
    ], 
    "requestBody": { 
     "content": { 
      "application/json-patch+json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/Event" 
       } 
      }, 
      "application/json": { 



European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 176 / 191 

       "schema": { 
        "$ref": 
"#/components/schemas/Event" 
       } 
      }, 
      "text/json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/Event" 
       } 
      }, 
      "application/*+json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/Event" 
       } 
      } 
     } 
    }, 
    "responses": { 
     "200": { 
      "description": "Success" 
     }, 
     "400": { 
      "description": "Bad Request", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "500": { 
      "description": "Server Error" 
     } 
    } 
   } 
  }, 
  "/v1/User": { 
   "post": { 
    "tags": [ 
     "User" 
    ], 
    "requestBody": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 177 / 191 

     "content": { 
      "application/json-patch+json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserRegistration" 
       } 
      }, 
      "application/json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserRegistration" 
       } 
      }, 
      "text/json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserRegistration" 
       } 
      }, 
      "application/*+json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserRegistration" 
       } 
      } 
     } 
    }, 
    "responses": { 
     "201": { 
      "description": "Success" 
     }, 
     "400": { 
      "description": "Bad Request", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "403": { 
      "description": "Forbidden", 
      "content": { 
       "text/plain": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 178 / 191 

        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "409": { 
      "description": "Conflict", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "412": { 
      "description": "Client Error", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 179 / 191 

        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "500": { 
      "description": "Server Error" 
     } 
    } 
   }, 
   "put": { 
    "tags": [ 
     "User" 
    ], 
    "requestBody": { 
     "content": { 
      "application/json-patch+json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserUpdate" 
       } 
      }, 
      "application/json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserUpdate" 
       } 
      }, 
      "text/json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserUpdate" 
       } 
      }, 
      "application/*+json": { 
       "schema": { 
        "$ref": 
"#/components/schemas/UserUpdate" 
       } 
      } 
     } 
    }, 
    "responses": { 
     "200": { 
      "description": "Success" 
     }, 
     "400": { 
      "description": "Bad Request", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 180 / 191 

        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "403": { 
      "description": "Forbidden", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 
     }, 
     "409": { 
      "description": "Conflict", 
      "content": { 
       "text/plain": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "application/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       }, 
       "text/json": { 
        "schema": { 
         "$ref": 
"#/components/schemas/ProblemDetails" 
        } 
       } 
      } 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 181 / 191 

     }, 
     "500": { 
      "description": "Server Error" 
     } 
    } 
   }, 
   "get": { 
    "tags": [ 
     "User" 
    ], 
    "parameters": [ 
     { 
      "name": "email", 
      "in": "query", 
      "schema": { 
       "type": "string" 
      } 
     } 
    ], 
    "responses": { 
     "201": { 
      "description": "Success" 
     } 
    } 
   } 
  } 
 }, 
 "components": { 
  "schemas": { 
   "ProblemDetails": { 
    "type": "object", 
    "properties": { 
     "Type": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Title": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Status": { 
      "type": "integer", 
      "format": "int32", 
      "nullable": true 
     }, 
     "Detail": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Instance": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Extensions": { 
      "type": "object", 
      "additionalProperties": { 
       "type": "object", 
       "additionalProperties": false 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 182 / 191 

      }, 
      "nullable": true, 
      "readOnly": true 
     } 
    }, 
    "additionalProperties": false 
   }, 
   "Event": { 
    "type": "object", 
    "properties": { 
     "UserId": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Action": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Platform": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Timestamp": { 
      "type": "string", 
      "nullable": true 
     }, 
     "VisitedPlatform": { 
      "type": "string", 
      "nullable": true 
     }, 
     "VisitedTool": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Query": { 
      "type": "string", 
      "nullable": true 
     }, 
     "FacetQuery": { 
      "type": "array", 
      "items": { 
       "type": "string" 
      }, 
      "nullable": true 
     }, 
     "QueriedPlatforms": { 
      "type": "string", 
      "nullable": true 
     }, 
     "SearchType": { 
      "type": "string", 
      "nullable": true 
     }, 
     "SearchResponse": { 
      "type": "array", 
      "items": { 
       "type": "string" 
      }, 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 183 / 191 

      "nullable": true 
     } 
    }, 
    "additionalProperties": false 
   }, 
   "User": { 
    "type": "object", 
    "properties": { 
     "Password": { 
      "type": "string", 
      "nullable": true 
     }, 
     "FirstName": { 
      "type": "string", 
      "nullable": true 
     }, 
     "LastName": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Company": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Vatin": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Street": { 
      "type": "string", 
      "nullable": true 
     }, 
     "PostalCode": { 
      "type": "string", 
      "nullable": true 
     }, 
     "City": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Country": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Sector": { 
      "type": "string", 
      "nullable": true 
     }, 
     "Email": { 
      "type": "string", 
      "nullable": true 
     } 
    }, 
    "additionalProperties": false 
   }, 
   "UserRegistration": { 
    "type": "object", 
    "properties": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 184 / 191 

     "User": { 
      "allOf": [ 
       { 
        "$ref": 
"#/components/schemas/User" 
       } 
      ], 
      "nullable": true 
     }, 
     "AcceptedToC": { 
      "type": "boolean" 
     }, 
     "AcceptedBlockChain": { 
      "type": "boolean" 
     } 
    }, 
    "additionalProperties": false 
   }, 
   "UserUpdate": { 
    "type": "object", 
    "properties": { 
     "User": { 
      "allOf": [ 
       { 
        "$ref": 
"#/components/schemas/User" 
       } 
      ], 
      "nullable": true 
     }, 
     "ID": { 
      "type": "string", 
      "nullable": true 
     } 
    }, 
    "additionalProperties": false 
   } 
  } 
 } 
} 

 
4. Risk Tool [ALM] 

4.1. REST API for Recipe and Workflow management and usage 

 { 
  "swagger": "2.0", 
  "basePath": "/api/v1", 
  "paths": { 
 "/recipes/": { 
   "post": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Recipe" 
         } 
       } 
     }, 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 185 / 191 

     "summary": "Add a recipe", 
     "operationId": "post_recipe", 
     "parameters": [ 
       { 
         "name": "payload", 
         "required": true, 
         "in": "body", 
         "schema": { 
           "$ref": "#/definitions/Recipe" 
         } 
       } 
     ], 
     "tags": [ 
       "recipes" 
     ] 
   }, 
   "get": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Recipe" 
         } 
       } 
     }, 
     "summary": "List all recipes", 
     "operationId": "list_recipes", 
     "tags": [ 
       "recipes" 
     ] 
   } 
 }, 
 "/recipes/{rid}": { 
   "parameters": [ 
     { 
       "name": "rid", 
       "in": "path", 
       "required": true, 
       "type": "string" 
     } 
   ], 
   "get": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Recipe" 
         } 
       } 
     }, 
     "summary": "Retrieve single recipe", 
     "operationId": "list_recipes", 
     "tags": [ 
       "recipes" 
     ] 
   }, 
   "delete": { 
     "responses": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 186 / 191 

       "204": { 
         "description": "Recipe deleted" 
       }, 
       "404": { 
         "description": "Not found" 
       } 
     }, 
     "summary": "Delete a recipe", 
     "operationId": "delete_recipe", 
     "tags": [ 
       "recipes" 
     ] 
   }, 
   "patch": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Recipe" 
         } 
       } 
     }, 
     "summary": "Update a recipe", 
     "operationId": "patch_recipe", 
     "parameters": [ 
       { 
         "name": "payload", 
         "required": true, 
         "in": "body", 
         "schema": { 
           "$ref": "#/definitions/Recipe" 
         } 
       } 
     ], 
     "tags": [ 
       "recipes" 
     ] 
   } 
 }, 
 "/workflows/": { 
   "post": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Workflow" 
         } 
       } 
     }, 
     "summary": "Add a workflow", 
     "operationId": "post_workflow", 
     "parameters": [ 
       { 
         "name": "payload", 
         "required": true, 
         "in": "body", 
         "schema": { 
           "$ref": "#/definitions/Workflow" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 187 / 191 

         } 
       } 
     ], 
     "tags": [ 
       "workflows" 
     ] 
   }, 
   "get": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Workflow" 
         } 
       } 
     }, 
     "summary": "List all workflows", 
     "operationId": "list_workflows", 
     "tags": [ 
       "workflows" 
     ] 
   } 
 }, 
 "/workflows/{rid}": { 
   "parameters": [ 
     { 
       "name": "rid", 
       "in": "path", 
       "required": true, 
       "type": "string" 
     } 
   ], 
   "get": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Workflow" 
         } 
       } 
     }, 
     "summary": "Retrieve single workflow", 
     "operationId": "list_workflows", 
     "tags": [ 
       "workflows" 
     ] 
   }, 
   "delete": { 
     "responses": { 
       "204": { 
         "description": "Workflow deleted" 
       }, 
       "404": { 
         "description": "Not found" 
       } 
     }, 
     "summary": "Delete a workflow", 
     "operationId": "delete_workflow", 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 188 / 191 

     "tags": [ 
       "workflows" 
     ] 
   }, 
   "patch": { 
     "responses": { 
       "200": { 
         "description": "Success", 
         "schema": { 
           "$ref": "#/definitions/Workflow" 
         } 
       } 
     }, 
     "summary": "Update a workflow", 
     "operationId": "patch_workflow", 
     "parameters": [ 
       { 
         "name": "payload", 
         "required": true, 
         "in": "body", 
         "schema": { 
           "$ref": "#/definitions/Workflow" 
         } 
       } 
     ], 
     "tags": [ 
       "workflows" 
     ] 
   } 
 } 
  }, 
  "info": { 
 "title": "Risk Analysis Tool", 
 "version": "1.0", 
 "description": "A tool for risk analysis in the manufacturing domain." 
  }, 
  "produces": [ 
 "application/json" 
  ], 
  "consumes": [ 
 "application/json" 
  ], 
  "tags": [ 
 { 
   "name": "recipes", 
   "description": "Recipe related operations" 
 }, 
 { 
   "name": "workflows", 
   "description": "Workflow related operations" 
 } 
  ], 
  "definitions": { 
 "Recipe": { 
   "description": "Module which computes output given a specific input", 
   "properties": { 
     "_id": { 
       "type": "string" 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 189 / 191 

     }, 
     "name": { 
       "type": "string" 
     }, 
     "description": { 
       "type": "string" 
     } 
   }, 
   "type": "object" 
 }, 
 "Workflow": { 
   "description": "TODO", 
   "properties": { 
     "_id": { 
       "type": "string" 
     } 
   }, 
   "type": "object" 
 } 
  }, 
  "responses": { 
 "ParseError": { 
   "description": "When a mask can't be parsed" 
 }, 
 "MaskError": { 
   "description": "When any error occurs on mask" 
 } 
  } 
} 

4.2. MQTT Subscription, Unsubscription and Publishing API 

 { 
  "asyncapi": "2.0.0", 
  "info": {"title": "Endpoints of MQTT functionality for the ALM Risk Management Tool", 
      "version": "0.1" 
  }, 
  "servers": { 
      "development": { 
          "url": "broker.smecluster.com", 
          "protocol": "mqtt", 
          "description": "This is a placeholder for the final EFPF Dataspine message 
bus.", 
          "security": [] 
    } 
  }, 
  "channels": { 
      "efpf/{topic}": { 
          "publish": { 
              "message": { 
                  "payload": { 
                      "type": "array", 
                      "examples": [ 
                          [ 
                              {"timestamp": 1591093430, "machineId": 0, 
"averageCycleTime": 30, "currentQuantity": 50, "targetQuantity": 100}, 
                              {"timestamp": 1591093430, "machineId": 1, 
"averageCycleTime": 27, "currentQuantity": 42, "targetQuantity": 100} 
                          ] 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 190 / 191 

                      ], 
                      "description": "Raw input data, which is an array that may 
consist of multiple elements, on which the recipe is to be run simultaneously." 
                  } 
              }, 
              "description": "A user or factory connector can stream data to this 
endpoint and the tool will read it. {topic} assumes the workflow input topic." 
          } 
      }, 
      "efpf/risk/{user}/{id}/{output}": { 
          "subscribe": { 
              "message": { 
                  "payload": { 
                      "type": "array", 
                      "examples": [ 
                          [ 
                              {"timestamp": 1591093430, "machineId": 0, 
"averageCycleTime": 30, "currentQuantity": 50, "targetQuantity": 100, 
"extrapolatedEndTime": 1591094930}, 
                              {"timestamp": 1591093430, "machineId": 1, 
"averageCycleTime": 33, "currentQuantity": 42, "targetQuantity": 100, 
"extrapolatedEndTime": 1591095344} 
                          ] 
                      ], 
                      "description": "Returns the input data, optionally with 
additional output data. For instance, calculates extrapolated end time of production 
with current production rates and amount of required products." 
                  } 
              } 
          }, 
          "description": "The risk tool transforms the input data into output and 
streams it to this endpoint. {id} assumes the workflow id and {output} assumes the 
workflow output topic. {user} should be a string specific to the user receiving this 
data." 
      }, 
      "efpf/risk/{user}/{id}/notification": { 
          "subscribe": { 
              "message": { 
                  "payload": { 
                      "type": "array", 
                      "examples": [ 
                          "The extrapolated finish time for machine 1 is more than 6 
minutes too late." 
                      ], 
                      "description": "For instance, if the threshold for 'much too 
late' is 6 minutes, a notification can be sent if the machine is expected to be 6 
minutes too late." 
                  } 
              }, 
              "description": "The risk tool eventually outputs a notification too if 
there's a risk. {id} assumes the workflow id. {user} should be a string specific to the 
user receiving this data." 
          } 
      }, 
      "efpf/risk/{user}/{id}/error": { 
          "subscribe": { 
              "message": { 
                  "payload": { 

http://www.efpf.org/


European Connected Factory Platform for Agile Manufacturing – www.efpf.org 

 

 

 
D3.2: EFPF Data Spine Realisation - I - Vs: 1.0 - Public 191 / 191 

                      "type": "array", 
                      "examples": [ 
                          "In update: index 100 is out of bounds for axis 1 with size 
100" 
                      ], 
                      "description": "Returns the error received in the backend." 
                  } 
              }, 
              "description": "If there is an error for any reason, the risk tool will 
publish it to this topic. {id} assumes the workflow id. {user} should be a string 
specific to the user receiving this data." 
          } 
      } 
  } 
} 

 

http://www.efpf.org/


 

 

 
 
 

www.efpf.org 


